Carbon nanotubes (CNTs) can be used as atomic force microscope (AFM) probes since they are ideal tip materials with a small diameter, high aspect ratio, and stiffness. In this study, a model of CNTs clamped in an elastic medium is proposed as nanoscale force sensing AFM probes. The relationship between vibration frequency and axial force of the CNT probe clamped in an elastic medium is analyzed based on the Euler-Bernoulli beam model and the Whitney-Riley model. The clamped length of CNTs, and the elastic modulus of elastic medium affect largely on the vibration and the buckling stability of a CNT AFM probe. The result showed that the sensitivity to vibration increases as the applied loads increase. The critical load in which the vibration frequency decreases rapidly, moving to large ones with decreasing ratio of length to diameter of CNTs. The theoretical investigation on the vibration frequency of CNT loaded in the axial direction would give a useful reference for designing a CNT used as a nano-force sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.