Efficiently scavenging piezoelectric vibration energy is attracting a lot of interest. One important type is the frequency up-conversion (FUC) energy harvester, in which a low-frequency beam (LFB) impacts a high-frequency beam (HFB). In this paper, four interface circuits, standard energy harvesting (SEH), self-powered synchronous electric charge extraction (SP-SECE), self-powered synchronized switch harvesting on inductor (SP-SSHI) and self-powered optimized SECE (SP-OSECE), are compared while rectifying the generated piezoelectric voltage. The efficiencies of the four circuits are firstly tested at constant displacement and further analyzed. Furthermore, the harvested power under FUC is tested for different electromechanical couplings and different load values. The results show that SP-OSECE performs best in the case of a weak coupling or low-load resistance, for which the maximum power can be 43% higher than that of SEH. As the coupling level increases, SP-SSHI becomes the most efficient circuit with a 31% higher maximum power compared to that of SEH. The reasons for the variations in each circuit with different coupling coefficients are also analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.