Aims
Although acute heart failure (AHF) with volume overload is treated with loop diuretics, their dosing and type of administration are mainly based upon expert opinion. A recent position paper from the Heart Failure Association (HFA) proposed a step‐wise pharmacologic diuretic strategy to increase the diuretic response and to achieve rapid decongestion. However, no study has evaluated this protocol prospectively.
Methods and results
The Efficacy of a Standardized Diuretic Protocol in Acute Heart Failure (ENACT‐HF) study is an international, multicentre, non‐randomized, open‐label, pragmatic study in AHF patients on chronic loop diuretic therapy, admitted to the hospital for intravenous loop diuretic therapy, aiming to enrol 500 patients. Inclusion criteria are as follows: at least one sign of volume overload (oedema, ascites, or pleural effusion), use ≥ 40 mg of furosemide or equivalent for >1 month, and a BNP > 250 ng/L or an N‐terminal pro‐B‐type natriuretic peptide > 1000 pg/L. The study is designed in two sequential phases. During Phase 1, all centres will treat consecutive patients according to the local standard of care. In the Phase 2 of the study, all centres will implement a standardized diuretic protocol in the next cohort of consecutive patients. The protocol is based upon the recently published HFA algorithm on diuretic use and starts with intravenous administration of two times the oral home dose. It includes early assessment of diuretic response with a spot urinary sodium measurement after 2 h and urine output after 6 h. Diuretics will be tailored further based upon these measurements. The study is powered for its primary endpoint of natriuresis after 1 day and will be able to detect a 15% difference with 80% power. Secondary endpoints are natriuresis and diuresis after 2 days, change in congestion score, change in weight, in‐hospital mortality, and length of hospitalization.
Conclusions
The ENACT‐HF study will investigate whether a step‐wise diuretic approach, based upon early assessment of urinary sodium and urine output as proposed by the HFA, is feasible and able to improve decongestion in AHF with volume overload.
BackgroundChronic aortic regurgitation (AR) patients demonstrate left ventricular (LV) remodeling with increased LV mass and volume but may have a preserved LV ejection fraction (EF). We hypothesize that in chronic AR, global longitudinal systolic and diastolic function will be reduced despite a preserved LV EF.MethodsWe studied with Doppler echocardiography 27 normal subjects, 87 patients with chronic AR with a LV EF > 50% (AR + PEF), 66 patients with an EF < 50% [AR + reduced LV ejection fraction (REF)] and 82 patients with hypertensive heart disease. LV volume, transmitral spectral and tissue Doppler were obtained. Myocardial velocities and their timing and longitudinal strain of the proximal and mid wall of each of the 3 apical views were obtained.ResultsAs compared to normals, global longitudinal strain was reduced in AR + PEF (13.8 ± 4.0%) and AR + REF (11.4 ± 4.7%) vs. normals (18.4 ± 3.6%, both p < 0.001). As an additional comparison group for AR + PEF, global longitudinal strain was reduced as compared to patients with hypertensive heart disease (p = 0.032). The average peak diastolic annular velocity (e') was decreased in AR + PEF (6.9 ± 3.3 cm/s vs. 13.4 ± 2.6 cm/s, p < 0.001) and AR + REF (4.8 ± 2.1 cm/s, p < 0.001). Peak rapid filling velocity/e' (E/e') was increased in both AR + PEF (14.4 ± 6.2 vs. 6.2 ± 1.3, p < 0.001) and AR + REF (18.8 ± 6.4, p < 0.001 vs. normals). Independent correlates of global longitudinal strain (r = 0.6416, p < 0.001) included EF (p < 0.0001), E/e' (p < 0.0001), and tricuspid regurgitation velocity (p = 0.0176).ConclusionWith chronic AR, there is impaired longitudinal function despite preserved EF. Moreover, global longitudinal strain was well correlated with noninvasive estimated LV filling pressures and pulmonary systolic arterial pressures.
Transcatheter aortic valve replacement in the setting of failed surgical bioprosthesis (valve-in-valve) is a valuable option for patients with bioprosthetic aortic stenosis or regurgitation who are deemed high risk for repeat open heart surgery. Although the procedure is successful with proper preprocedural assessment, instances of left main (LM) coronary artery ostium obstruction have been documented. We present a case of LM coronary obstruction in the immediate postoperative period following implantation of a 20-mm Edwards Sapien 3 valve inside the degenerated 21-mm Mitroflow bioprosthesis stenosis, which was treated with double stenting alongside the Edwards Sapien 3 valve creating a channel (“neo left main”) that extended from mid-LM to the upper margin of the Edwards Sapien 3 valve. Although valve-in-valve in a Mitroflow degenerated bioprosthesis is a relatively safe procedure, 2 or more stents may be necessary to scaffold a channel to the coronary arteries between Edwards Sapien 3 prosthesis and aorta in the event of a coronary obstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.