The eubacterial RNA polymerase core, a transcription machinery performing DNA-dependent RNA polymerization, consists of two α subunits and β, β′ and ω subunits. An additional σ subunit is recruited for promoter recognition and transcription initiation. Cyanobacteria, a group of eubacteria characterized by oxygenic photosynthesis, have a unique composition of the RNA polymerase (RNAP) core due to splitting of the β′ subunit to N-terminal γ and C-terminal β′ subunits. The physiological roles of the small ω subunit of RNAP, encoded by the rpoZ gene, are not yet completely understood in any bacteria. We found that although ω is non-essential in cyanobacteria, it has a major impact on the overall gene expression pattern. In ΔrpoZ strain, recruitment of the primary σ factor into the RNAP holoenzyme is inefficient, which causes downregulation of highly expressed genes and upregulation of many low-expression genes. Especially, genes encoding proteins of photosynthetic carbon concentrating and carbon fixing complexes were down, and the ΔrpoZ mutant showed low light-saturated photosynthetic activity and accumulated photoprotective carotenoids and α-tocopherol. The results indicate that the ω subunit facilitates the association of the primary σ factor with the RNAP core, thereby allowing efficient transcription of highly expressed genes.
At the EILATox-Oregon Workshop, nine luminescent whole-cell bacterial sensors were used for the determination of bioavailable metals in blind samples (17 synthetic and 3 environmental). A non-inducible luminescent control strain was used to determine sample matrix effects and bacterial toxicity. Whole-cell bacterial sensors capable of determining arsenic, inorganic mercury and its organic derivatives, cadmium, lead or copper were used in suspensions and a bacterial sensor for the detection of inorganic mercury was immobilized onto fibre-optic tips using calcium alginate. Bioavailable amounts of metals were estimated using calibration plots, that were constructed to determine the range of metals giving rise to a linear relationship between luminescence and the amount of metals present in the standard solutions. EILATox-Oregon sample 5, which contained 74 mg l(-1) of Hg, gave a significant response with both formats of the mercury sensor. The bioavailable amounts of mercury according to the measurement of bacterial sensor in suspension and immobilized onto a fibre-optic tip were 76 and 93 mg l(-1), respectively. The bacterial sensor for arsenic and copper showed a response with sample 6 (58 mg l(-1) of As) and sample 8 (400 mg l(-1) of metham sodium), respectively. This study showed that the bacterial sensors in suspension or immobilized onto optical fibres are capable of quantifying bioavailable metals from unknown samples. The measurement protocol of bacterial sensors is simple and possible to perform in the field. Moreover, the samples do not need any pretreatment before analysis. Construction and characterization of the strain for the detection of bioavailable copper are described.
SummaryIn eubacteria, replacement of one σ factor in the RNA polymerase (RNAP) holoenzyme by another one changes the transcription pattern. Cyanobacteria are eubacteria characterized by oxygenic photosynthesis, and they typically encode numerous group 2 σ factors that closely resemble the essential primary σ factor. A mutant strain of the model cyanobacterium Synechocystis sp. PCC 6803 without functional group 2 σ factors (named as ΔsigBCDE) could not acclimate to heat, high salt or bright light stress, but in standard conditions ΔsigBCDE grew only 9% slower than the control strain. One-fifth of the genes in ΔsigBCDE was differently expressed compared with the control strain in standard growth conditions and several physiological changes in photosynthesis, and pigment and lipid compositions were detected. To directly analyze the σ factor content of RNAP holoenzyme in vivo, a His-tag was added to the γ subunit of RNAP in Synechocystis and RNAPs were collected. The results revealed that all group 2 σ factors were recruited by RNAP in standard conditions, but recruitment of SigB and SigC increased in heat stress, SigD in bright light, SigE in darkness and SigB, SigC and SigE in high salt, explaining the poor acclimation of ΔsigBCDE to these stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.