Individual multilocus heterozygosity estimates based on a limited number of loci are expected to correlate only weakly with the inbreeding level of an individual. Before using multilocus heterozygosity estimates in studies of inbreeding, their ability to capture information on inbreeding in the given setting should be tested. A convenient method for this is to compute the heterozygosity-heterozygosity correlation, i.e. the mean correlation between multilocus heterozygosity estimates calculated from random samples of loci, which should be positive if multilocus heterozygosity carries a signature of inbreeding. Rhh is an extension package for the statistical software r that estimates this correlation and calculates three measures of individual multilocus heterozygosity: homozygosity by loci, internal relatedness and standardized heterozygosity. The extension package is available through the CRAN (http://cran.r-project.org) and has a homepage at http://www.helsinki.fi/biosci/egru/research/software.
Although the brain is known to be a very plastic organ, the effects of common ecological interactions like predation or competition on brain development have remained largely unexplored. We reared nine-spined sticklebacks (Pungitius pungitius) from two coastal marine (predation-adapted) and two isolated pond (competition-adapted) populations in a factorial experiment, manipulating perceived predatory risk and food supply to see (i) if the treatments affected brain development and (ii) if there was population differentiation in the response to treatments. We detected differences in plasticity of the bulbus olfactorius (chemosensory centre) between habitats: marine fish were not plastic, whereas pond fish had larger bulbi olfactorii in the presence of perceived predation. Marine fish had larger bulbus olfactorius overall. Irrespective of population origin, the hypothalamus was smaller in the presence of perceived predatory risk. Our results demonstrate that perceived predation risk can influence brain development, and that the effect of an environmental factor on brain development may depend on the evolutionary history of a given population in respect to this environmental factor.
Geographical variation in behaviour within species is common. However, how behavioural plasticity varies between and within locally adapted populations is less studied. Here, we studied behavioural plasticity induced by perceived predation risk and food availability in pond (low predation – high competition) vs. coastal marine (high predation – low competition) nine‐spined sticklebacks (Pungitius pungitius) reared in a common garden experiment. Pond sticklebacks were more active feeders, more risk‐taking, aggressive and explorative than marine sticklebacks. Perceived predation risk decreased aggression and risk‐taking of all fish. Food restriction increased feeding activity and risk‐taking. Pond sticklebacks became more risk‐taking than marine sticklebacks under food shortage, whereas well‐fed fish behaved similarly. Among poorly fed fish, males showed higher drive to feed, whereas among well‐fed fish, females did. Apart from showing how evolutionary history, ontogenetic experience and sex influence behaviour, the results provide evidence for habitat‐dependent expression of adaptive phenotypic plasticity.
Theory predicts that the sex making greater investments into reproductive behaviours demands higher cognitive ability, and as a consequence, larger brains or brain parts. Further, the resulting sexual dimorphism can differ between populations adapted to different environments, or among individuals developing under different environmental conditions. In the nine-spine stickleback (Pungitius pungitius), males perform nest building, courtship, territory defence and parental care, whereas females perform mate choice and produce eggs. Also, predation-adapted marine and competition-adapted pond populations have diverged in a series of ecologically relevant traits, including the level of phenotypic plasticity. Here, we studied sexual dimorphism in brain size and architecture in nine-spined stickleback from marine and pond populations reared in a factorial experiment with predation and food treatments in a common garden experiment. Males had relatively larger brains, larger telencephala, cerebella and hypothalami (6-16% divergence) than females, irrespective of habitat. Females tended to have larger bulbi olfactorii than males (13%) in the high food treatment, whereas no such difference was found in the low food treatment. The strong sexual dimorphism in brain architecture implies that the different reproductive allocation strategies (behaviour vs. egg production) select for different investments into the costly brains between males and females. The lack of habitat dependence in brain sexual dimorphism suggests that the sex-specific selection forces on brains differ only negligibly between habitats. Although significance of the observed sex-specific brain plasticity in the size of bulbus olfactorius remains unclear, it demonstrates the potential for sex-specific neural plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.