In [S. Arumugam, V. Mathew and J. Shen, On fractional metric dimension of graphs, preprint], Arumugam et al. studied the fractional metric dimension of the cartesian product of two graphs, and proposed four open problems. In this paper, we determine the fractional metric dimension of vertex-transitive graphs, in particular, the fractional metric dimension of a vertex-transitive distance-regular graph is expressed in terms of its intersection numbers. As an application, we calculate the fractional metric dimension of Hamming graphs and Johnson graphs, respectively. Moreover, we give an inequality for metric dimension and fractional metric dimension of an arbitrary graph, and determine all graphs when the equality holds. Finally, we establish bounds on the fractional metric dimension of the cartesian product of graphs. As a result, we completely solve the four open problems.
A set of vertices W resolves a graph G if every vertex of G is uniquely determined by its vector of distances to the vertices in W . The metric dimension for G, denoted by dim(G), is the minimum cardinality of a resolving set of G. In order to study the metric dimension for the hierarchical product G where |V (G 2 )| is the order of G 2 . If G 1 is a path with an end-vertex u 1 , we obtain some tight inequalities for dim(G u2 2 ⊓G u1 1 ). Finally, we show that similar results hold for the fractional metric dimension.
We describe the full automorphism group of the power (di)graph of a finite group. As an application, we solve a conjecture proposed by Doostabadi, Erfanian and Jafarzadeh in 2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.