Abstract-Indoor positioning systems have received increasing attention for supporting location-based services in indoor environments. WiFi-based indoor localization has been attractive due to its open access and low cost properties. However, the distance estimation based on received signal strength indicator (RSSI) is easily affected by the temporal and spatial variance due to the multipath effect, which contributes to most of the estimation errors in current systems. In this work, we analyze this effect across the physical layer and account for the undesirable RSSI readings being reported. We explore the frequency diversity of the subcarriers in OFDM systems and propose a novel approach called FILA, which leverages the channel state information (CSI) to build a propagation model and a fingerprinting system at the receiver. We implement the FILA system on commercial 802.11 NICs, and then evaluate its performance in different typical indoor scenarios. The experimental results show that the accuracy and latency of distance calculation can be significantly enhanced by using CSI. Moreover, FILA can significantly improve the localization accuracy compared with the corresponding RSSI approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.