Despite the rising prevalence of methadone treatment in pregnant women with opioid use disorder, the effects of methadone on neurobehavioral development remain unclear. We developed a translational mouse model of prenatal methadone exposure (PME) that resembles the typical pattern of opioid use by pregnant women who first use oxycodone then switch to methadone maintenance pharmacotherapy, and subsequently become pregnant while maintained on methadone. We investigated the effects of PME on physical development, sensorimotor behavior, and motor neuron properties using a multidisciplinary approach of physical, biochemical, and behavioral assessments along with brain slice electrophysiology and in vivo magnetic resonance imaging. Methadone accumulated in the placenta and fetal brain, but methadone levels in offspring dropped rapidly at birth which was associated with symptoms and behaviors consistent with neonatal opioid withdrawal. PME produced substantial impairments in offspring physical growth, activity in an open field, and sensorimotor milestone acquisition. Furthermore, these behavioral alterations were associated with reduced neuronal density in the motor cortex and a disruption in motor neuron intrinsic properties and local circuit connectivity. The present study adds to the limited body of work examining PME by providing a comprehensive, translationally relevant characterization of how PME disrupts offspring physical and neurobehavioral development.
Adeno-associated viral vectors (AAVs) are increasingly useful preclinical tools in neuroscience research studies for interrogating cellular and neurocircuit functions and mapping brain connectivity. Clinically, AAVs are showing increasing promise as viable candidates for treating multiple neurological diseases. Here, we briefly review the utility of AAVs in mapping neurocircuits, manipulating neuronal function and gene expression, and activity labeling in preclinical research studies as well as AAV-based gene therapies for diseases of the nervous system. This review highlights the vast potential that AAVs have for transformative research and therapeutics in the neurosciences.
As the opioid crisis has continued to grow, so has the number of infants exposed to opioids during the prenatal period. A growing concern is that prenatal exposure to opioids may induce persistent neurological changes that increase the propensity for future addictions. Although alcohol represents the most likely addictive substance that the growing population of prenatal opioid exposed will encounter as they mature, no studies to date have examined the effect of prenatal opioid exposure on future sensitivity to alcohol reward. Using a recently developed mouse model of prenatal methadone exposure (PME), we investigated the rewarding properties of alcohol and alcohol consumption in male and female adolescent PME and prenatal saline exposed (PSE) control animals. Conditioned place preference to alcohol was disrupted in PME offspring in a sex-dependent manner with PME males exhibiting resistance to the rewarding properties of alcohol. Repeated injections of alcohol revealed enhanced sensitivity to the locomotor-stimulating effects of alcohol specific to PME females. PME males consumed significantly more alcohol over 4 weeks of alcohol access relative to PSE males and exhibited increased resistance to quinineadulterated alcohol. Further, a novel machine learning model was developed to employ measured differences in alcohol consumption and drinking microstructure to reliably predict prenatal exposure. These findings indicate that PME alters the sensitivity to alcohol reward in adolescent mice in a sex-specific manner and suggests prenatal opioid exposure may induce persistent effects on reward neurocircuitry that can reprogram offspring behavioural response to alcohol later in life.
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.