Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N=-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH.
Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, https://doi.org/10.1128/AEM. . Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS5 insertion or IS-mediated deletion in cadC, while population B11 had a point mutation affecting the arginine activator adiY. The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR, yhiM, and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases (hya and hyb) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes (dmsABC, frdABCD, hybABO, nikABCDE, and nrfAC). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of catabolism.IMPORTANCE Experimental evolution of an enteric bacterium under a narrow buffered range of acid pH leads to loss of genes that enhance fitness above or below the buffered pH range, including loss of enzymes that may raise external pH in the absence of buffer. Prominent modes of evolutionary change involve IS-mediated insertions and deletions that knock out key regulators. Over generations of acid stress, catabolism undergoes reregulation in ways that differ for each evolving strain.KEYWORDS acid, Escherichia coli, experimental evolution, GABA, low pH, RNA polymerase, decarboxylase, fnr E nteric bacteria need to survive a wide range of pH values throughout the human intestinal tract. The pH of the intestinal tract ranges from 1.5 to 3.5 in the stomach, increases to 4 to 7 in the duodenum, reaches 7 to 9 in the jejunum, and decreases to pH 5 to 6 in the cecum (1). On a microscopic scale, extreme gradients of pH occur across the intestinal epithelium where enterobacteria adhere. To cope with such conditions, Escherichia coli maintains a cytoplasmic pH homeostasis...
Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA. Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. IMPORTANCE Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to favor salicylate tolerance at the expense of drug resistance. Similar aspirin-associated loss of drug resistance might occur in bacterial pathogens found in arterial plaques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.