second model, the two main conditions were parametrically modulated by the two categories, respectively (SOM, S5.1). The activation of the precuneus was higher for hard dominance-solvable games than for easy ones ( Fig. 4A and table S10). The activation of the insula was higher for the highly focal coordination games than for less focal ones ( Fig. 4B and table S11). Previous studies also found that precuneus activity increased when the number of planned moves increased (40, 41). The higher demand for memory-related imagery and memory retrieval may explain the greater precuneus activation in hard dominance-solvable games. In highly focal coordination games, the participants may have felt quite strongly that the pool students must notice the same salient feature. This may explain why insula activation correlates with NCI.Participants might have disagreed about which games were difficult. We built a third model to investigate whether the frontoparietal activation correlates with how hard a dominance-solvable game is and whether the activation in insula and ACC correlates with how easy a coordination game is. Here, the two main conditions were parametrically modulated by each participant's probability of obtaining a reward in each game (SOM, S2.2 and S5.2). We found a negative correlation between the activation of the precuneus and the participant's probability of obtaining a reward in dominance-solvable games ( Fig. 4C and table S12), which suggests that dominance-solvable games that yielded lower payoffs presented harder mental challenges. In a previous study on working memory, precuneus activity positively correlated with response times, a measure of mental effort (24). Both findings are consistent with the interpretation that subjective measures reflecting harder tasks (higher efforts) correlate with activation in precuneus. A positive correlation between insula activation and the participant's probability of obtaining a reward again suggests that coordination games with a highly salient feature strongly activated the "gut feeling" reported by many participants (Fig. 4D and table S13). A previous study found that the subjective rating of "chills intensity" in music correlates with activation of insula (42). Both findings are consistent with the interpretation that the subjective intensity of how salient a stimulus is correlates with activation in insula.As mentioned, choices were made significantly faster in coordination games than in dominancesolvable games. The results of the second and third models provide additional support for the idea that intuitive and deliberative mental processes have quite different properties. The "slow and effortful" process was more heavily taxed when the dominance-solvable games were harder. The "fast and effortless" process was more strongly activated when coordination was easy.
Renal medullary interstitial cells (RMICs) are subjected to osmotic, inflammatory, and mechanical stress as a result of ureteral obstruction, which may influence the expression and activity of cyclooxygenase type 2 (COX-2). Inflammatory stress strongly induces COX-2 in RMICs. To explore the direct effect of mechanical stress on the expression and activity of COX-2, cultured RMICs were subjected to varying amounts of pressure over time using a novel pressure apparatus. COX-2 mRNA and protein were induced following 60 mmHg pressure for 4 and 6 h, respectively. COX-1 mRNA and protein levels were unchanged. PGE(2) production in the RMICs was increased when cells were subjected to 60 mmHg pressure for 6 h and was prevented by a selective COX-2 inhibitor. Pharmacological inhibition indicating that pressure-induced COX-2 expression is dependent on p38 MAPK and biochemical knockdown experiments showed that NF-kappaB might be involved in the COX-2 induction by pressure. Importantly, terminal deoxyneucleotidyl transferase-mediated dUTP nick-end labeling and methylthiazoletetetrazolium assay studies showed that subjecting RMICs to 60 mmHg pressure for 6 h does not affect cell viability, apoptosis, and proliferation. To further examine the regulation of COX-2 in vivo, rats were subjected to unilateral ureteral obstruction (UUO) for 6 and 12 h. COX-2 mRNA and protein level was increased in inner medulla in response to 6- and 12-h UUO. COX-1 mRNA and protein levels were unchanged. These findings suggest that in vitro application of pressure recapitulates the effects on RMICs found after in vivo UUO. This directly implicates pressure as an important regulator of renal COX-2 expression.
Pressure plays an important role during many physiological processes, and abnormal pressures may induce changes which favour onset and progression of disease in many organs. In vivo, renal medullary interstitial cells (RMIC) are subjected to pressure as a result of ureteral obstruction, which may influence the expression of COX‐2.To further examine this regulation, rats were subjected to unilateral ureteral obstruction (UUO) for 6 and 12h; showed increased COX‐2 mRNA levels in IM, whereas COX‐2 protein expression was increased only after 12hUUO. COX‐1 mRNA and protein level were unchanged. To explore the direct effect of pressure on the expression and activity of COX‐2 cultured RMIC were subjected to pressures of 60 mmHg over time (2‐12 h) using a novel pressure apparatus. QPCR confirmed increased COX‐2 mRNA after 2h. COX‐2 protein expression was increased following 60 mmHg of pressure for 6h. COX‐1 mRNA and protein levels were unchanged. PGE2 excretion from the RMIC was increased, when cells were subjected to pressure of 60 mm Hg for 6h, which was prevented by a selective COX‐2 inhibitor. Importantly, TUNEL and MTT assay studies showed that applying pressure to the RMIC does not affect cell viability, apoptosis, and proliferation.We demonstrated that in vitro application of pressure recapitulates the effects on RMIC found after in vivo UUO. This directly implicates pressure as an important regulator of renal COX‐2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.