Highway safety improvement projects are identified by using either (i) a site-specific or (ii) a systemic approach. In the site-specific approach, locations for improvements are ranked according to different performance measures such as critical crash rate, expected crash rate or equivalent property damage only. Alternatively, in the systemic approach, roadway characteristics such as number of lanes, shoulder width, etc. are flagged as a ‘risk’ (or ‘preventative’) feature that increases (decreases) the risk of negative outcomes. Using the Highway Safety Information System database, we seek to merge the two approaches by, first, identifying roadway factors associated with an increased occurrence of car crashes (features we call ‘risk factors’) and, subsequently, identifying roadway segments with a higher crash risk. Specifically, we model the locations of crashes as a realization from a spatial point process. We then parameterize the associated intensity surface of this spatial point process as the sum of a regression on roadway characteristics and spatially correlated error terms. Thus, through the regression piece, we identify hazardous roadway features and through the spatially correlated error terms, we identify locations of high risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.