Inhibitors of histone deacetylases (HDACs) induce growth arrest, differentiation, and apoptosis of colon cancer cell lines in vitro and have demonstrated anti-cancer efficacy in clinical trials. Whereas a role for HDAC1 and -2 in mediating components of the HDAC inhibitor response has been reported, the role of HDAC3 is unknown. Here we demonstrate increased protein expression of HDAC3 in human colon tumors and in duodenal adenomas from Apc1638 N/؉ mice. HDAC3 was also maximally expressed in proliferating crypt cells in normal intestine. Silencing of HDAC3 expression in colon cancer cell lines resulted in growth inhibition, a decrease in cell survival, and increased apoptosis. Similar effects were observed for HDAC2 and, to a lesser extent, for HDAC1. HDAC3 silencing also selectively induced expression of alkaline phosphatase, a marker of colon cell maturation. Concurrent with its effect on cell growth, overexpression of HDAC3 and other Class I HDACs inhibited basal and butyrate-induced p21 transcription in a Sp1/Sp3-dependent manner, whereas silencing of HDAC3 stimulated p21 promoter activity and expression. However, the magnitude of the effects elicited by silencing of individual Class I HDACs was significantly less than that induced by HDAC inhibitors. These findings identify HDAC3 as a gene deregulated in human colon cancer and as a novel regulator of colon cell maturation and p21 expression. These findings also demonstrate that multiple Class I HDACs are involved in repressing p21 and suggest that the growthinhibitory and apoptotic effects induced by HDAC inhibitors are probably mediated through the inhibition of multiple HDACs.Acetylation of DNA-bound core histones and sequence-specific transcription factors is a fundamental mechanism of transcriptional regulation. Histone acetylation is typically associated with increased transcription (1) and is regulated by two opposing classes of enzymes: histone acetyltransferases, which add acetyl groups to specific amino acids of the histone protein, and histone deacetylases (HDACs), 2 which catalyze their removal. A second mechanism by which HDACs may regulate gene transcription is by regulating acetylation of DNA sequence-specific transcription factors. Examples include p53, E2F, and Sp3, where deacetylation has been linked to reduced DNA binding or transcriptional activity (2-4). Through these mechanisms, HDACs are emerging as critical regulators of cell growth, differentiation, and apoptotic programs. We and others have demonstrated that inhibitors of HDACs, such as sodium butyrate, trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), and valproic acid, induce cell cycle arrest, differentiation, and apoptosis in colon cancer cell lines in vitro (5-10). These observations suggest a physiological role for transcriptional repression mediated by HDACs in maintaining cell proliferation and survival and inhibiting differentiation. Correspondingly, the deregulation of HDAC-mediated transcriptional repression has been linked to tumorigenesis. The up-regulated e...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.