We report the thermal degradation of a solid film of polypropylene carbonate, driven by the photothermal effect of gold nanoparticles. We provide characterization of the products of this chemical reaction and use the known activation barrier for this chemical reaction to discuss the temperatures obtained in the film. In addition, we report the efficiency of the reaction as a function of nanoparticle concentration and find nanoparticles to be significantly more effective than an organic dye at driving this reaction.
Magnetite nanoparticles (MNPs) show remarkable stability during extreme photothermal heating (≥770 K), displaying no change in size, crystallinity, or surfactants. The heat produced is also shown as chemically useful, driving the high-barrier thermal decomposition of polypropylene carbonate. This suggests MNPs are better photothermal agents (compared to gold nanoparticles), for photothermally driving high-barrier chemical transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.