Trauma during early life is a major risk factor for the development of anxiety disorders and suggests that the developing brain may be particularly sensitive to perturbation. Increased vulnerability most likely involves altering neural circuits involved in emotional regulation. The role of serotonin in emotional regulation is well established, but little is known about the postnatal development of the raphe where serotonin is made. Using whole-cell patch-clamp recording and immunohistochemistry, we tested whether serotonin circuitry in the dorsal and median raphe was functionally mature during the first 3 postnatal weeks in mice. Serotonin neurons at postnatal day 4 (P4) were hyperexcitable. The increased excitability was due to depolarized resting membrane potential, increased resistance, increased firing rate, lack of 5-HT 1A autoreceptor response, and lack of GABA synaptic activity. Over the next 2 weeks, membrane resistance decreased and resting membrane potential hyperpolarized due in part to potassium current activation. The 5-HT 1A autoreceptor-mediated inhibition did not develop until P21. The frequency of spontaneous inhibitory and excitatory events increased as neurons extended and refined their dendritic arbor. Serotonin colocalized with vGlut3 at P4 as in adulthood, suggesting enhanced release of glutamate alongside enhanced serotonin release. Because serotonin affects circuit development in other brain regions, altering the developmental trajectory of serotonin neuron excitability and release could have many downstream consequences. We conclude that serotonin neuron structure and function change substantially during the first 3 weeks of life during which external stressors could potentially alter circuit formation.
Agri‐environmental incentive programmes encourage conversion of marginal agricultural land to grasslands to reduce soil erosion and support biodiversity of native flora and fauna. Most grassland animals colonise these constructed habitats as propagules from the surrounding landscape. Ants are slow to colonise and rely on resources within the patch, making them valuable as indicators of disturbance and recovery.
We studied how ant species diversity and composition are structured by patch and landscape variation of grasslands in Ohio, USA. Ant communities were collected from 23 constructed grasslands differing in area, age, vegetation, soils, management and surrounding land cover. We analysed trap frequency for 14 species that varied in habitat specialisation to identify species responses to patch‐ and landscape‐level predictors.
Grassland age and soil texture determined ant species richness and community composition. Trap frequency analysis showed contrasting species responses to patch and landscape characteristics: habitat specialists were more abundant in older, larger patches with more surrounding grassland, while disturbance‐tolerant species were more frequent in younger patches surrounded by intensive agriculture. Habitat generalists and open habitat species included a variety of patch‐ and landscape‐level factors in best models.
Ant community assembly in constructed grasslands is shaped by time and physical characteristics at the patch‐level, but the surrounding landscape acts as a filter for the colonising community. Our findings support the use of ants as ecosystem recovery indicators following disturbance in agricultural landscapes, but show that shifts in species composition are better indicators of grassland habitat variation than ant richness.
Host‐associated organisms (e.g., parasites, commensals, and mutualists) may rely on their hosts for only a portion of their life cycle. The life‐history traits and physiology of hosts are well‐known determinants of the biodiversity of their associated organisms. The environmental context may strongly influence this interaction, but the relative roles of host traits and the environment are poorly known for host‐associated communities. We studied the roles of host traits and environmental characteristics affecting ant‐associated mites in semi‐natural constructed grasslands in agricultural landscapes of the Midwest USA. Mites are frequently found in ant nests and also riding on ants in a commensal dispersal relationship known as phoresy. During nonphoretic stages of their development, ant‐associated mites rely on soil or nest resources, which may vary depending on host traits and the environmental context of the colony. We hypothesized that mite diversity is determined by availability of suitable host ant species, soil detrital resources and texture, and habitat disturbance. Results showed that that large‐bodied and widely distributed ant species within grasslands support the most diverse mite assemblages. Mite richness and abundance were predicted by overall ant richness and grassland area, but host traits and environmental predictors varied among ant hosts: mites associated with Aphaenogaster rudis depended on litter depth, while Myrmica americana associates were predicted by host frequency and grassland age. Multivariate ordinations of mite community composition constructed with host ant species as predictors demonstrated host specialization at both the ant species and genus levels, while ordinations with environmental variables showed that ant richness, soil texture, and grassland age also contributed to mite community structure. Our results demonstrate that large‐bodied, locally abundant, and cosmopolitan ant species are especially important regulators of phoretic mite diversity and that their role as hosts is also dependent on the context of the interaction, especially soil resources, texture, site age, and area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.