Manganese oxide (MnOx) was anodically coelectrodeposited with poly(3,4-ethylenedioxythiophene) (PEDOT) from an aqueous solution of Mn(OAc)2, 3,4-ethylenedioxythiophene, LiClO4 and sodium dodecyl sulfate to yield a MnOx/PEDOT composite thin film. The MnOx/PEDOT film showed significant improvement over the MnOx only and PEDOT only films for the oxygen reduction reaction, with a >0.2 V decrease in onset and half-wave overpotential and >1.5 times increase in current density. Furthermore, the MnOx/PEDOT films were competitive with commercial benchmark 20% Pt/C, outperforming it in the half-wave ORR region and exhibiting better electrocatalytic selectivity for the oxygen reduction reaction upon methanol exposure. The high activity of the MnOx/PEDOT composite is attributed to synergistic charge transfer capabilities, attained by coelectrodepositing MnOx with a conductive polymer while simultaneously achieving intimate substrate contact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.