Increased serial sarcomere number (SSN) has been observed in rats following downhill running training due to the emphasis on active lengthening contractions; however, little is known about the influence on dynamic contractile function. Therefore, we employed 4 weeks of weighted downhill running training in rats, then assessed soleus SSN and work loop performance. We hypothesised trained rats would produce greater net work output during work loops due to a greater SSN. Thirty-one Sprague-Dawley rats were assigned to a training or sedentary control group. Weight was added during downhill running via a custom-made vest, progressing from 5–15% body mass. Following sacrifice, the soleus was dissected, and a force-length relationship was constructed. Work loops (cyclic muscle length changes) were then performed about optimal muscle length (LO) at 1.5–3-Hz cycle frequencies and 1–7-mm length changes. Muscles were then fixed in formalin at LO. Fascicle lengths and sarcomere lengths were measured to calculate SSN. Intramuscular collagen content and crosslinking were quantified via a hydroxyproline content and pepsin-solubility assay. Trained rats had longer fascicle lengths (+13%), greater SSN (+8%), and a less steep passive force-length curve than controls (P<0.05). There were no differences in collagen parameters (P>0.05). Net work output was greater (+78–209%) in trained than control rats for the 1.5-Hz work loops at 1 and 3-mm length changes (P<0.05), however, net work output was more related to maximum specific force (R2=0.17-0.48, P<0.05) than SSN (R2=0.03-0.07, P=0.17-0.86). Therefore, contrary to our hypothesis, training-induced sarcomerogenesis likely contributed little to the improvements in work loop performance. This article has an associated First Person interview with the first author of the paper.
Residual force enhancement (rFE) is characterized by increased steady-state isometric force following active muscle lengthening compared to a fixed-end isometric contraction at the same muscle length and level of neuromuscular activation. Many studies have characterized rFE in humans; however, the day-to-day reliability of rFE is unclear. We aimed to examine day-to-day reliability of rFE across various contraction types in the dorsiflexors in males and females. Twenty-five recreationally active young adults completed 2 visits, 1 week apart. Following determination of maximum voluntary contraction (MVC) strength, rFE was assessed during maximal voluntary effort, 20% MVC electrically stimulated, and 20% MVC torque-matching conditions. Each rFE condition was completed at 2 joint excursions: 0-20º plantar flexion (PF) and 0-40ºPF. Intraclass correlation coefficients (ICC) assessed relative reliability, and typical error of measurement (TEM), and the correlation variability of TEM (CVTEM) assessed absolute reliability. Electrically stimulated contractions demonstrated the highest reliability at 40ºPF (ICC:0.9; CVTEM:22.8 %) and 20ºPF (ICC:0.8; CVTEM:34.3 %), followed by maximal voluntary contractions at 40ºPF (ICC:0.7; CVTEM:55.1%) and 20ºPF (ICC:0.1; CVTEM:81.1%). The torque-matching trials showed poor reliability for 20º and 40ºPF (ICC: -0.1-0.3; CVTEM: 118.1 %-155.2 %). Our results demonstrate higher reliability of rFE when stretching to the descending limb of the torque-angle relationship compared to the plateau region, and in electrically stimulated compared to voluntary contractions in the dorsiflexors for both males and females.
Increased serial sarcomere number (SSN) has been observed in rats via downhill running training due to the emphasis on active lengthening contractions; however, little is known about the influence on dynamic contractile function. Therefore, we employed 4 weeks of weighted downhill running training in rats, then assessed soleus SSN and work loop performance. We hypothesized trained rats would produce greater net work output during faster, higher-strain work loops due to a greater SSN. Thirty-one Sprague-Dawley rats were assigned to control or training groups. Weight was added during running via a custom-made vest, progressing from 5-15% body mass. Following sacrifice, the soleus was dissected, and a force-length relationship was constructed. Work loops (active shortening followed by passive lengthening) were then performed about optimal muscle length (LO) at 1.5-3-Hz cycle frequencies and 1-7-mm strains, to assess net work output. Next, muscles were fixed in formalin at LO. Fascicle lengths and sarcomere lengths were measured and used to calculate SSN. Intramuscular collagen content and crosslinking were quantified via a hydroxyproline content and pepsin-solubility assay. Trained rats had longer fascicle lengths (+13%), greater SSN (+8%), greater specific active forces (+50%), and lower passive forces (45-62%) than controls (P<0.05). There were no differences in collagen parameters (P>0.05). Net work output was greater (+101-424%) in trained than control rats for the 1.5-Hz loops at 1, 3, and 5-mm strains (P<0.05) and showed relationships with fascicle length (R2=0.14-0.24, P<0.05). These results suggest training-induced longitudinal muscle growth may improve dynamic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.