Congenital human cytomegalovirus (HCMV) infection can result in in severe and permanent neurological injury in newborns, and vaccine development is accordingly a major public health priority. HCMV can also cause disease in solid organ (SOT) and hematopoietic stem cell transplant (HSCT) recipients, and a vaccine would be valuable in prevention of viremia and end-organ disease in these populations. Currently there is no licensed HCMV vaccine, but progress toward this goal has been made in recent clinical trials. A recombinant HCMV glycoprotein B (gB) vaccine has been shown to have some efficacy in prevention of infection in young women and adolescents, and provided benefit to HCMV-seronegative SOT recipients. Similarly, DNA vaccines based on gB and the immunodominant T-cell target, pp65 (ppUL83), have been shown to reduce viremia in HSCT patients. This review provides an overview of HCMV vaccine candidates in various stages of development, as well as an update on the current status of ongoing clinical trials. Protective correlates of vaccine-induced immunity may be different for pregnant woman and transplant patients. As more knowledge emerges about correlates of protection, the ultimate licensure of HCMV vaccines may reflect the uniqueness of the target populations being immunized.
The cytomegaloviruses (CMVs) are among the most genetically complex mammalian viruses, with viral genomes that often exceed 230 kbp. Manipulation of cytomegalovirus genomes is largely performed using infectious bacterial artificial chromosomes (BACs), which necessitates the maintenance of the viral genome in Escherichia coli and successful reconstitution of virus from permissive cells after transfection of the BAC. Here we describe an alternative strategy for the mutagenesis of guinea pig cytomegalovirus that utilizes clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing to introduce targeted mutations to the viral genome. Transient transfection and drug selection were used to restrict lytic replication of guinea pig cytomegalovirus to cells that express Cas9 and virus-specific guide RNA. The result was highly efficient editing of the viral genome that introduced targeted insertion or deletion mutations to nonessential viral genes. Cotransfection of multiple virus-specific guide RNAs or a homology repair template was used for targeted, markerless deletions of viral sequence or to introduce exogenous sequence by homology-driven repair. As CRISPR/Cas9 mutagenesis occurs directly in infected cells, this methodology avoids selective pressures that may occur during propagation of the viral genome in bacteria and may facilitate genetic manipulation of low-passage or clinical CMV isolates. IMPORTANCE The cytomegalovirus genome is complex, and viral adaptations to cell culture have complicated the study of infection in vivo.Recombineering of viral bacterial artificial chromosomes enabled the study of recombinant cytomegaloviruses. Here we report the development of an alternative approach using CRISPR/Cas9-based mutagenesis in guinea pig cytomegalovirus, a small-animal model of congenital cytomegalovirus disease. CRISPR/Cas9 mutagenesis can introduce the same types of mutations to the viral genome as bacterial artificial chromosome recombineering but does so directly in virus-infected cells. CRISPR/Cas9 mutagenesis is not dependent on a bacterial intermediate, and defined viral mutants can be recovered after a limited number of viral genome replications, minimizing the risk of spontaneous mutation.
BACKGROUND: Cytomegalovirus (CMV) is a leading infectious cause of neurologic deficits, both in the settings of congenital and perinatal infection, but few animal models exist to study neurodevelopmental outcomes. This study examined the impact of neonatal guinea pig CMV (GPCMV) infection on spatial learning and memory in a Morris water maze (MWM) model. METHODS: Newborn pups were challenged intraperitoneally (ip) with a pathogenic red fluorescent protein (RFP)-tagged GPCMV, or sham-inoculated. On days 15–19 post-infection (pi), pups were tested in the MWM. Viral loads were measured in blood and tissue by quantitative PCR (qPCR), and brain samples collected at necropsy were examined by histology and immunohistochemistry. RESULTS: Viremia (DNAemia) was detected at day 3 pi in 7/8 challenged animals. End-organ dissemination was observed, by qPCR, in lung, liver, and spleen. CD4 + and CD8 + T-cell infiltrates were present in brains of challenged animals, particularly in periventricular and hippocampal regions. Reactive gliosis and microglial nodules were observed. Statistically significant spatial learning and memory deficits were observed by MWM, particularly for total maze distance travelled (p<0.0001). CONCLUSION: Neonatal GPCMV infection in guinea pigs results in cognitive defects demonstrable by the MWM. This neonatal guinea pig challenge model can be exploited for studying antiviral interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.