Background
African swine fever (ASF) is a highly contagious and devastating pig disease that has caused extensive global economic losses. Understanding ASF virus (ASFV) transmission dynamics within a herd is necessary in order to prepare for and respond to an outbreak in the United States. Although the transmission parameters for the highly virulent ASF strains have been estimated in several articles, there are relatively few studies focused on moderately virulent strains. Using an approximate Bayesian computation algorithm in conjunction with Monte Carlo simulation, we have estimated the adequate contact rate for moderately virulent ASFV strains and determined the statistical distributions for the durations of mild and severe clinical signs using individual, pig-level data. A discrete individual based disease transmission model was then used to estimate the time to detect ASF infection based on increased mild clinical signs, severe clinical signs, or daily mortality.
Results
Our results indicate that it may take two weeks or longer to detect ASF in a finisher swine herd via mild clinical signs or increased mortality beyond levels expected in routine production. A key factor contributing to the extended time to detect ASF in a herd is the fairly long latently infected period for an individual pig (mean 4.5, 95% P.I., 2.4 - 7.2 days).
Conclusion
These transmission model parameter estimates and estimated time to detection via clinical signs provide valuable information that can be used not only to support emergency preparedness but also to inform other simulation models of evaluating regional disease spread.
Background
Avian influenza (AI) is an infectious viral disease that affects several species and has zoonotic potential. Due to its associated health and economic repercussions, minimizing AI outbreaks is important. However, most control measures are generic and mostly target pathways important for the conventional poultry farms producing chickens, turkeys, and eggs and may not target other pathways that may be specific to the upland game bird sector. The goal of this study is to provide evidence to support the development of novel strategies for sector-specific AI control by comparing and contrasting practices and potential pathways for spread in upland game bird farms with those for conventional poultry farms in the United States. Farm practices and processes, seasonality of activities, geographic location and inter-farm distance were analyzed across the sectors. All the identified differences were framed and discussed in the context of their associated pathways for virus introduction into the farm and subsequent between-farm spread.
Results
Differences stemming from production systems and seasonality, inter-farm distance and farm densities were evident and these could influence both fomite-mediated and local-area spread risks. Upland game bird farms operate under a single, independent owner rather than being contracted with or owned by a company with other farms as is the case with conventional poultry. The seasonal marketing of upland game birds, largely driven by hunting seasons, implies that movements are seasonal and customer-vendor dynamics vary between industry groups. Farm location analysis revealed that, on average, an upland game bird premises was 15.42 km away from the nearest neighboring premises with birds compared to 3.74 km for turkey premises. Compared to turkey premises, the average poultry farm density in a radius of 10 km of an upland game bird premises was less than a half, and turkey premises were 3.8 times (43.5% compared with 11.5%) more likely to fall within a control area during the 2015 Minnesota outbreak.
Conclusions
We conclude that the existing differences in the seasonality of production, isolated geographic location and epidemiological seclusion of farms influence AI spread dynamics and therefore disease control measures should be informed by these and other factors to achieve success.
Electronic supplementary material
The online version of this article (10.1186/s12917-019-1876-y) contains supplementary material, which is available to authorized users.
Background: African swine fever (ASF) is a highly contagious and devastating pig disease that has caused extensive global economic losses. Understanding ASF virus (ASFV) transmission dynamics within a herd is necessary in order to prepare for and respond to an outbreak in the United States. Although the transmission parameters for the highly virulent ASF strains have been estimated in several articles, there are relatively few studies focused on moderately virulent strains. Using an approximate Bayesian computation algorithm in conjunction with Monte Carlo simulation, we have estimated the adequate contact rate for moderately virulent ASFV strains and determined the statistical distributions for the durations of mild and severe clinical signs using individual, pig-level data. A discrete individual based disease transmission model was then used to estimate the time to detect ASF infection based on increased mild clinical signs, severe clinical signs, or daily mortality. Results: Our results indicate that it may take two weeks or longer to detect ASF in a finisher swine herd via mild clinical signs or increased mortality beyond levels expected in routine production. A key factor contributing to the extended time to detect ASF in a herd is the fairly long latently infected period for an individual pig (mean 4.5, 95% P.I., 2.4 - 7.2 days). Conclusion: These transmission model parameter estimates and estimated time to detection via clinical signs provide valuable information that can be used not only to support emergency preparedness but also to inform other simulation models of evaluating regional disease spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.