The contribution of heritable factors to antibody function and diversity is not fully understood, but has profound implications for delineating variation in the antibody response observed at the population-level. We performed matched long-read-based characterization of the immunoglobulin heavy chain (IGH) locus and expressed antibody repertoire profiling at population-scale to examine, for the first time, the impact of IGH genomic variation on the antibody repertoire. We characterized extensive IGH polymorphism, including novel structural variants (SVs), small insertion/deletions (indels), single nucleotide variants (SNVs), and IG genes and alleles. Countering models that antibody repertoire diversity is driven largely by stochastic processes, we demonstrate that IGH genetic factors make significant contributions to gene usage in both the naive and antigen-experienced repertoire. Specifically, the usage of 73% of IGH genes was associated with common polymorphisms, including those capable of explaining >70% of variance in gene usage. These variants were enriched in transcription factor binding sites and other functional elements associated with V(D)J recombination, and overlapped polymorphisms from genome-wide association studies. Furthermore, we found evidence for the coordinated regulation of IGH genes across the repertoire, demonstrating complex interactions between IGH variants and gene usage. These results refine our understanding of variation observed in the antibody repertoire, and will advance the study of antibody function in disease.
A subset of B-cell lymphoma patients have dominant mutations in the histone H3 lysine 27 (H3K27) methyltransferase EZH2, which change it from a monomethylase to a trimethylase. These mutations occur in aromatic resides surrounding the active site and increase growth and alter transcription. We study the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. They are 50% identical, but differ in key aromatic residues in their active site. Given how these residues affect EZH2 activity, we tested whether they are responsible for the distinct catalytic activities of NRMT1/2. Additionally, NRMT1 acts as a tumor suppressor in breast cancer cells. Its loss promotes oncogenic phenotypes but sensitizes cells to DNA damage. Mutations of NRMT1 naturally occur in human cancers, and we tested a select group for altered activity. While directed mutation of the aromatic residues had minimal catalytic effect, NRMT1 mutants N209I (endometrial cancer) and P211S (lung cancer) displayed decreased trimethylase and increased monomethylase/dimethylase activity. Both mutations are located in the peptide-binding channel and indicate a second structural region impacting enzyme specificity. The NRMT1 mutants demonstrated a slower rate of trimethylation and a requirement for higher substrate concentration. Expression of the mutants in wild type NRMT backgrounds showed no change in N-terminal methylation levels or growth rates, demonstrating they are not acting as dominant negatives. Expression of the mutants in cells lacking endogenous NRMT1 resulted in minimal accumulation of N-terminal trimethylation, indicating homozygosity could help drive oncogenesis or serve as a marker for sensitivity to DNA damaging chemotherapeutics or γ-irradiation.
Immunoglobulins (IGs), crucial components of the adaptive immune system, are encoded by three genomic loci. However, the complexity of the IG loci severely limits the effective use of short read sequencing, limiting our knowledge of population diversity in these loci. We leveraged existing long read whole-genome sequencing (WGS) data, fosmid technology, and IG targeted single-molecule, real-time (SMRT) long-read sequencing (IG-Cap) to create haplotype-resolved assemblies of the IG Lambda (IGL) locus from 6 ethnically diverse individuals. In addition, we generated 10 diploid assemblies of IGL from a diverse cohort of individuals utilizing IG-cap. From these 16 individuals, we identi ed signi cant allelic diversity, including 36 novel IGLV alleles. In addition, we observed highly elevated single nucleotide variation (SNV) in IGLV genes relative to IGL intergenic and genomic background SNV density. By comparing SNV calls between our high quality assemblies and existing short read datasets from the same individuals, we show a high propensity for false-positives in the short read datasets. Finally, for the rst time, we nucleotide-resolved common 5-10 Kb duplications in the IGLC region that contain functional IGLJ and IGLC genes. Together these data represent a signi cant advancement in our understanding of genetic variation and population diversity in the IGL locus.
Variation in the antibody response has been linked to differential outcomes in disease, and suboptimal vaccine and therapeutic responsiveness, the determinants of which have not been fully elucidated. Countering models that presume antibodies are generated largely by stochastic processes, we demonstrate that polymorphisms within the immunoglobulin heavy chain locus (IGH) impact the naive and antigen-experienced antibody repertoire, indicating that genetics predisposes individuals to mount qualitatively and quantitatively different antibody responses. We pair recently developed long-read genomic sequencing methods with antibody repertoire profiling to comprehensively resolve IGH genetic variation, including novel structural variants, single nucleotide variants, and genes and alleles. We show that IGH germline variants determine the presence and frequency of antibody genes in the expressed repertoire, including those enriched in functional elements linked to V(D)J recombination, and overlapping disease-associated variants. These results illuminate the power of leveraging IGH genetics to better understand the regulation, function, and dynamics of the antibody response in disease.
The light chain immunoglobulin genes of biomedically relevant mouse strains are poorly documented in current germline gene databases. We previously showed that IGH loci of wild-derived mouse strains representing the major mouse subspecies contained 247 germline IGHV sequences not curated in the international ImMunoGeneTics (IMGT) information system, which is the most commonly used database that curates the germline repertoires used for sequence alignment in AIRR-seq analysis. Despite containing levels of polymorphism similar to the IGH locus, the germline gene content and diversity of the light chain loci have not been comprehensively cataloged. To explore the extent of germline light chain repertoire diversity across mouse strains commonly used in the biomedical sciences, we performed AIRR-seq analysis and germline gene inference for 18 inbred mouse strains, including the four wild-derived strains with diverse sub-species origins. We inferred 1582 IGKV and 63 IGLV sequences, representing 459 and 22 unique IGKV and IGLV sequences. Of the unique inferred germline IGKV and IGLV sequences, 67.8% and 59%, respectively, were undocumented in IMGT. Across strains we observed germline IGKV sequences shared by three distinct IGK haplotypes and a more conserved IGLV germline repertoire. In addition, J gene inference indicated a novel IGK2 allele shared between PWD/PhJ and MSM/MsJ and a novel IGLJ1 allele for LEWES/EiJ and IGLJ2 allele for MSM/MsJ. Finally, a combined IGHV, IGKV, and IGLV phylogenetic analysis of wild-derived germline repertoires displayed reduced germline diversity for the light chain repertoire compared to the heavy chain repertoire, suggesting potential evolutionary differences between the two chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.