Self-propagating reactions in Al/Ni nanostructured multilayer foils are examined both experimentally and computationally to determine the impact of variations in reactant spacing on reaction properties. Heats of reaction and reaction velocities have been characterized as a function of average bilayer spacing for sputter-deposited, single-bilayer foils (having a uniform bilayer spacing) and for dual-bilayer foils (having two different bilayer spacings that are labeled thick and thin). In the latter case, the spatial distribution of the thick and thin bilayers is found to have a significant effect on reaction velocity, with coarse distributions leading to much higher reaction velocities than fine distributions. Numerical simulations of reaction velocity match experimental data well for most spatial distributions, with the exception of very coarse distributions or distributions containing very small bilayer spacings. A simple model based on thermal diffusivities and reaction velocities is proposed to predict when the spatial distribution of thick and thin bilayers becomes coarse enough to affect reaction velocity. This combination of experiment and simulation will allow for more effective design and prediction of reaction velocities in both sputter-deposited and mechanically processed reactive materials with variable reactant spacings.
Articles you may be interested inEffect of Zr concentration on the microstructure of Al and the magnetoresistance properties of the magnetic tunnel junction with a Zr-alloyed Al-oxide barrier
Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers J. Appl. Phys. 105, 083504 (2009); 10.1063/1.3087490Modeling of the self-propagating reactions of nickel and aluminum multilayered foils Deposition and characterization of a self-propagating CuO x / Al thermite reaction in a multilayer foil geometry High temperature, self-propagating reactions are observed in vapor-deposited Al/Zr multilayered foils of overall atomic ratios 3 Al:1 Zr and 2 Al:1 Zr and nanoscale layer thicknesses; however, the reaction velocities do not exhibit the inverse dependence on bilayer thickness that is expected based on changes in the average diffusion distance. Instead, for bilayer thicknesses of 20-30 nm, the velocity is essentially constant at $7.7 m/s. We explore several possible explanations for this anomalous behavior, including microstructural factors, changes in the phase evolution, and phase transformations in the reactant layers, but find no conclusive explanations. We determine that the phase evolution during self-propagating reactions in foils with a 3 Al:1 Zr stoichiometry is a rapid transformation from Al/Zr multilayers to the equilibrium intermetallic Al 3 Zr compound with no intermediate crystalline phases. This phase evolution is the same for foils of 90 nm bilayer thicknesses and foils of bilayer thicknesses in the range of 27 nm to 35 nm. Further, for foils with a bilayer thickness of 90 nm and a 3 Al:1 Zr overall chemistry, the propagation front is planar and steady, in contrast to unsteady reaction fronts in foils with 1 Al:1 Zr overall chemistry and similar bilayer thicknesses. V C 2013 AIP Publishing LLC. [http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.