Xtend is a soft X-ray imaging telescope developed for the X-Ray Imaging and Spectroscopy Mission (XRISM). XRISM is scheduled to be launched in the Japanese fiscal year 2022. Xtend consists of the Soft X-ray Imager (SXI), an X-ray CCD camera, and the X-ray Mirror Assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. The SXI uses the P-channel, back-illuminated type CCD with an imaging area size of 31 mm on a side. The four CCD chips are arranged in a 2×2 grid and can be cooled down to −120 • C with a single-stage Stirling cooler. The XMA nests thin aluminum foils coated with gold in a confocal way with an outer diameter of 45 cm. A pre-collimator is installed in front of the X-ray mirror for the reduction of the stray light. Combining the SXI and XMA with a focal length of 5.6m, a field of view of 38 × 38 over the energy range from 0.4 to 13 keV is realized. We have completed the fabrication of the flight model of both SXI and XMA. The performance verification has been successfully conducted in a series of sub-system level tests. We also carried out on-ground calibration measurements and the data analysis is ongoing.
Cell-membrane glycerolipids exhibit a common structural backbone of asymmetric 1,2-diacyl-sn-glycerol bearing polar head groups in the sn-3 position. In this study, the possible effects of sn-3 head groups on the helical conformational property around the 1,2-diacyl moiety in the solution state were examined. 1H NMR Karplus relation studies were carried out using a series of 1,2-dipalmitoyl-sn-glycerols bearing different sn-3 substituents (namely palmitoyl, benzyl, hydrogen, and phosphates). The 1H NMR analysis indicated that the helical property around the 1,2-diacyl moiety is considerably affected by these sn-3 substituents. The sn-3 hydroxy group induced a unique helical property, which was considerably dependent on the solvents used. In CDCl3 solution, three staggered conformers, namely gt(+), gg(−) and tg, were randomized, while in more polar solvents, the gt(+) conformer with (+)-helicity was amplified at the expense of gg(−) and tg conformers. The sn-3 phosphocholine in phosphatidylcholine exhibited a greater effect on the gt(+) conformer, which was independent of the solvents used. From the 1H NMR analysis, the helical conformational properties around the 1,2-diacyl moiety conformed to a simple empirical rule, which permitted the proposal of a conformational diagram for 1,2-dipalmitoyl-sn-glycerols in the solution states.
We have been developing the SOI pixel detector "INTPIX" for space use and general purpose applications such as the residual stress measurement of a rail and high energy physics experiments. INTPIX is a monolithic pixel detector composed of a high-resistivity Si sensor, a SiO 2 insulator, and CMOS pixel circuits utilizing Silicon-On-Insulator (SOI) technology. We have considered the possibility of using INTPIX to observe X-ray polarization in space. When the semiconductor detector is used in space, it is subject to radiation damage resulting from high-energy protons. Therefore, it is necessary to investigate whether INTPIX has high radiation tolerance for use in space. The INTPIX8 was irradiated with 6 MeV protons up to a total dose of 2 krad at HIMAC, National Institute of Quantum Science in Japan, and evaluated the degradation of the performance, such as energy resolution and non-uniformity of gain and readout noise between pixels. After 500 rad irradiation, which is the typical lifetime of an X-ray astronomy satellite, the degradation of energy resolution at 14.4 keV is less than 10%, and the non-uniformity of readout noise and gain between pixels is constant within 0.1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.