Signal transmission among cells enables long-range coordination in biological systems. However, the scarcity of quantitative measurements hinders the development of theories that relate signal propagation to cellular heterogeneity and spatial organization. We address this problem in a bacterial community that employs electrochemical cell-to-cell communication. We developed a model based on percolation theory, which describes how signals propagate through a heterogeneous medium. Our model predicts that signal transmission becomes possible when the community is organized near a critical phase transition between a disconnected and a fully connected conduit of signaling cells. By measuring population-level signal transmission with single-cell resolution in wild-type and genetically modified communities, we confirm that the spatial distribution of signaling cells is organized at the predicted phase transition. Our findings suggest that at this critical point, the population-level benefit of signal transmission outweighs the single-cell level cost. The bacterial community thus appears to be organized according to a theoretically predicted spatial heterogeneity that promotes efficient signal transmission.
The dormant state of bacterial spores is generally thought to be devoid of biological activity. We show that despite continued dormancy, spores can integrate environmental signals over time through a preexisting electrochemical potential. Specifically, we studied thousands of individual Bacillus subtilis spores that remain dormant when exposed to transient nutrient pulses. Guided by a mathematical model of bacterial electrophysiology, we modulated the decision to exit dormancy by genetically and chemically targeting potassium ion flux. We confirmed that short nutrient pulses result in step-like changes in the electrochemical potential of persistent spores. During dormancy, spores thus gradually release their stored electrochemical potential to integrate extracellular information over time. These findings reveal a decision-making mechanism that operates in physiologically inactive cells.
Multi-agent consensus under jamming attacks is investigated. Specifically, inter-agent communications over a network are assumed to fail at certain times due to jamming of transmissions by a malicious attacker. A new stochastic communication protocol is proposed to achieve finite-time practical consensus between agents. In this protocol, communication attempt times of agents are randomized and unknown by the attacker until after the agents make their communication attempts. Through a probabilistic analysis, we show that the proposed communication protocol, when combined with a stochastic ternary control law, allows agents to achieve consensus regardless of the frequency of attacks. We demonstrate the efficacy of our results by considering two different strategies of the jamming attacker: a deterministic attack strategy and a more malicious communication-aware attack strategy.
Signal propagation over long distances is a ubiquitous feature of multicellular communities, but cell-to-cell variability can cause propagation to be highly heterogeneous. Simple models of signal propagation in heterogenous media, such as percolation theory, can potentially provide a quantitative understanding of these processes, but it is unclear whether these simple models properly capture the complexities of multicellular systems. We recently discovered that in biofilms of the bacterium Bacillus subtilis, the propagation of an electrical signal is statistically consistent with percolation theory, and yet it is reasonable to suspect that key features of this system go beyond the simple assumptions of basic percolation theory. Indeed, we find here that the probability for a cell to signal is not independent from other cells as assumed in percolation theory, but instead is correlated with its nearby neighbors. We develop a mechanistic model, in which correlated signaling emerges from cell division, phenotypic inheritance, and cell displacement, that reproduces the experimentally observed correlations. We find that the correlations do not significantly affect the spatial statistics, which we rationalize using a renormalization argument. Moreover, the fraction of signaling cells is not constant in space, as assumed in percolation theory, but instead varies within and across biofilms. We find that this feature lowers the fraction of signaling cells at which one observes the characteristic power-law statistics of cluster sizes, consistent with our experimental results. We validate the model using a mutant biofilm whose signaling probability decays along the propagation direction. Our results reveal key statistical features of a correlated signaling process in a multicellular community. More broadly, our results identify extensions to percolation theory that do or do not alter its predictions and may be more appropriate for biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.