Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, no quantitative, spatially-explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here, we use 6,579 georeferenced samples to generate a mechanistic understanding of the patterns of global soil nematode abundance and functional group composition. The resulting maps show that 4.4 ± 0.64 10 20 nematodes (total biomass ~0.3 Gt) inhabit surface soils across the world, with higher abundances in sub-arctic regions (38% of total), than in temperate (24%), or tropical regions (21%). Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes into global biogeochemical models, to predict elemental cycling under current and future climate scenarios.
Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan. Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought resistance, while P application facilitates and improves drought tolerance mostly through physio-biochemical adjustments, regardless of water availability. It is imperative to explore the underlying metabolic mechanisms and effects of different levels of P fertilization on P. zhennan under drought conditions in order to design appropriate conservation and management strategies for this species, which is at risk of extinction.
Cancer is a serious health problem and the second leading cause of death around the globe. Present review is an attempt to provide utmost information based on ethno-pharmacological and toxicological aspects of anti-cancer plants of the world. A total of 276 articles published in English journals and containing maximum ethnomedicinal information were reviewed using several data sources such as; Google scholar, Web of Science, Scopus, PubMed and floras of different countries. A total of 199 anti-cancer plants were recorded in present review and results indicated that traditional medicines are mostly being use in developing countries for cancer treatment. Traditionally and scientifically skin and breast cancer types gained more focus. Seventy plants were reportedly analyzed for in-vitro activities while 32 plants were having in-vivo reports. Twenty nine pure compounds (mostly phenolic) were reportedly isolated from anti-cancer plants and tested against different cancer cell lines. Inspite having better efficiency of ethnomedicines as compared to synthetic drugs, several plants have also shown toxic effects on living system. Therefore, we invite researchers attention to carry out detailed ethno-pharmacological and toxicological studies on un-explored anti-cancer plants in order to provide reliable knowledge to the patients and develop novel anti-cancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.