Background: B-cell epitopes play important roles in vaccine design, clinical diagnosis, and antibody production. Although some models have been developed to predict linear or conformational B-cell epitopes, their performance is still unsatisfactory. Hundreds of thousands of linear B-cell epitope data have accumulated in the Immune Epitope Database (IEDB). These data can be explored using the deep learning methods, in order to create better predictive models for linear B-cell epitopes. Results: After data cleaning, we obtained 240,563 peptide samples with experimental evidence from the IEDB database, including 25,884 linear B-cell epitopes and 214,679 non-epitopes. Based on the peptide center, we adapted each peptide to the same length by trimming or extending. A random portion of the data, with the same amount of epitopes and non-epitopes, were set aside as test dataset. Then a same number of epitopes and non-epitopes were randomly selected from the remaining data to build a classifier with the feedforward deep neural network. We built eleven classifiers to form an ensemble prediction model. The model will report a peptide as an epitope if it was classified as epitope by all eleven classifiers. Then we used the test data set to evaluate the performance of the model using the area value under the receiver operating characteristic (ROC) curve (AUC) as an indicator. We established 40 models to predict linear B-cell epitopes of length from 11 to 50 separately, and found that the AUC value increased with the length and tended to be stable when the length was 38. Repeated results showed that the models constructed by this method were robust. Tested on our and two public test datasets, our models outperformed current major models available. Conclusions: We applied the feedforward deep neural network to the large amount of linear B-cell epitope data with experimental evidence in the IEDB database, and constructed ensemble prediction models with better performance than the current major models available. We named the models as DLBEpitope and provided web services using the models at http://ccb1.bmi.ac.cn:81/dlbepitope/.
Transcript stability is associated with many biological processes, and the factors affecting mRNA stability have been extensively studied. However, little is known about the features related to human long noncoding RNA (lncRNA) stability. By inhibiting transcription and collecting samples in 10 time points, genome-wide RNA-seq studies was performed in human lung adenocarcinoma cells (A549) and RNA half-life datasets were constructed. The following observations were obtained. First, the half-life distributions of both lncRNAs and messanger RNAs (mRNAs) with one exon (lnc-human1 and m-human1) were significantly different from those of both lncRNAs and mRNAs with more than one exon (lnc-human2 and m-human2). Furthermore, some factors such as full-length transcript secondary structures played a contrary role in lnc-human1 and m-human2. Second, through the half-life comparisons of nucleus- and cytoplasm-specific and common lncRNAs and mRNAs, lncRNAs (mRNAs) in the nucleus were found to be less stable than those in the cytoplasm, which was derived from transcripts themselves rather than cellular location. Third, kmers-based protein−RNA or RNA−RNA interactions promoted lncRNA stability from lnc-human1 and decreased mRNA stability from m-human2 with high probability. Finally, through applying deep learning−based regression, a non-linear relationship was found to exist between the half-lives of lncRNAs (mRNAs) and related factors. The present study established lncRNA and mRNA half-life regulation networks in the A549 cell line and shed new light on the degradation behaviors of both lncRNAs and mRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.