In this paper, we investigate the existence and stability of solutions for a class of optimal control problems with 1-mean equicontinuous controls, and the corresponding state equation is described by non-instantaneous impulsive differential equations. The existence theorem is obtained by the method of minimizing sequence, and the stability results are established by using the related conclusions of set-valued mappings in a suitable metric space. An example with the measurable admissible control set, in which the controls are not continuous, is given in the end.
This paper is intended as an attempt to investigate the existence and
stability of solutions for a class of fractional optimal control problems
characterized with non-instantaneous impulsive differential equations. By
using the method of minimizing sequence and the related conclusions of
set-valued mapping, the results of solvability and stability for a class of
optimal control problems are obtained in the suitable metric space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.