In this paper, we prove the existence of pullback attractors in CH01(Ω) for a nonclassical diffusion equation with delay term g(t, ut) which contains some hereditary characteristics. We consider two types of nonlinearity f: one is the case of critical growth and the other one is the polynomial growth of arbitrary order p − 1(p ≥ 2).
In this paper, we mainly investigate upper semicontinuity and regularity of attractors for nonclassical diffusion equations with perturbed parameters ν and the nonlinear term f satisfying the polynomial growth of arbitrary order $p-1$
p
−
1
($p \geq 2$
p
≥
2
). We extend the asymptotic a priori estimate method (see (Wang et al. in Appl. Math. Comput. 240:51–61, 2014)) to verify asymptotic compactness and upper semicontinuity of a family of semigroups for autonomous dynamical systems (see Theorems 2.2 and 2.3). By using the new operator decomposition method, we construct asymptotic contractive function and obtain the upper semicontinuity for our problem, which generalizes the results obtained in (Wang et al. in Appl. Math. Comput. 240:51–61, 2014). In particular, the regularity of global attractors is obtained, which extends and improves some results in (Xie et al. in J. Funct. Spaces 2016:5340489, 2016; Xie et al. in Nonlinear Anal. 31:23–37, 2016).
In this paper, based on the notation of time-dependent attractors introduced by Conti, Pata and Temam in (J. Differ. Equ. 255:1254–1277, 2013), we prove the existence of time-dependent global attractors in $\mathcal{H}_{t}$Ht for a class of nonclassical reaction–diffusion equations with the forcing term $g(x)\in H^{-1}(\varOmega )$g(x)∈H−1(Ω) and the nonlinearity f satisfying the polynomial growth of arbitrary $p-1$p−1 ($p\geq 2$p≥2) order, which generalizes the results obtained in (Appl. Anal. 94:1439–1449, 2015) and (Bound. Value Probl. 2016: 10, 2016).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.