(1) Background: This work aims to investigate the metabolomic changes in PIGinH11 pigs and investigate differential compounds as potential therapeutic targets for metabolic diseases. (2) Methods: PIGinH11 pigs were established with a CRISPR/Cas9 system. PNPLA3I148M, hIAPP, and GIPRdn were knocked in the H11 locus of the pig genome. The differential metabolites between and within groups were compared at baseline and two months after high-fat-high-sucrose diet induction. (3) Results: 72.02% of the 815 detected metabolites were affected by the transgenic effect. Significantly increased metabolites included isoleucine, tyrosine, methionine, oxoglutaric acid, acylcarnitine, glucose, sphinganines, ceramides, and phosphatidylserines, while fatty acids and conjugates, phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins were decreased. Lower expression of GPAT3 and higher expression of PNPLA3I148M decreased the synthesis of diacylglycerol and phosphatidylcholines. Accumulated ceramides that block Akt signaling and decrease hyocholic acid and lysophosphatidylcholines might be the main reason for increased blood glucose in PIGinH11 pigs, which was consistent with metabolomic changes in patients. (4) Conclusions: Through serum metabolomics and lipidomics studies, significant changes in obesity and diabetes-related biomarkers were detected in PIGinH11 pigs. Excessive fatty acids β-oxidation interfered with glucose and amino acids catabolism and reduced phosphatidylcholines. Decreased hyocholic acid, lysophosphatidylcholine, and increased ceramides exacerbated insulin resistance and elevated blood glucose. Phosphatidylserines were also increased, which might promote chronic inflammation by activating macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.