Chemotherapy resistance observed in patients with colorectal cancer (CRC) may be related to the presence of cancer stem cells (CSCs), but the underlying mechanism(s) remain unclear. Carcinoma-associated fibroblasts (CAFs) are intimately involved in tumor recurrence, and targeting them increases chemo-sensitivity. We investigated whether fibroblasts might increase CSCs thus mediating chemotherapy resistance. CSCs were isolated from either patient-derived xenografts or CRC cell lines based on expression of CD133. First, CSCs were found to be inherently resistant to cell death induced by chemotherapy. In addition, fibroblast-derived conditioned medium (CM) promoted percentage, clonogenicity and tumor growth of CSCs (i.e., CD133+ and TOP-GFP+) upon treatment with 5-fluorouracil (5-Fu) or oxaliplatin (OXA). Further investigations exhibited that exosomes, isolated from CM, similarly took the above effects. Inhibition of exosome secretion decreased the percentage, clonogenicity and tumor growth of CSCs. Altogether, our findings suggest that, besides targeting CSCs, new therapeutic strategies blocking CAFs secretion even before chemotherapy shall be developed to gain better clinical benefits in advanced CRCs.
Rotaviruses are an important cause of severe diarrheal illness in children globally. We characterized rotaviruses sampled in humans, insectivores (shrews) and rodents from urban and rural regions of Zhejiang province, China. Phylogenetic analyses revealed seven genotypic constellations of human rotaviruses with six different combinations of G and P genotypes - G3P[8] (50.06%), G9P[8] (36.16%), G1P[8] (8.92%), G2P[4] (4.63%), G3P[3] (0.12%), and G3P[9] (0.12%). In rodents and shrews sampled from the same locality we identified a novel genotype constellation (G32-P[46]-I24-R18-C17-M17-A28-N17-T19-E24-H19), a novel P genotype (P[45]), and two different AU-1-like rotaviruses associated with a G3P[3] genotype combination. Of particular note was a novel rotavirus from a human patient that was closely related to viruses sampled from rodents in the same region, indicative of a local species jump. In sum, these data are suggestive of the cross-species transmission of rodent rotaviruses into humans and for reassortment among human and animal rotaviruses.
SUMMARYArabidopsis AGL13 is a member of the AGL6 clade of the MADS box gene family. GUS activity was specifically detected from the initiation to maturation of both pollen and ovules in AGL13:GUS Arabidopsis. The sterility of the flower with defective pollen and ovules was found in AGL13 RNAi knockdown and AGL13 + SRDX dominant-negative mutants. These results indicate that AGL13 acts as an activator in regulation of early initiation and further development of pollen and ovules. The production of similar floral organ defects in the severe AGL13 + SRDX and SEP2 + SRDX plants and the similar enhancement of AG nuclear localization efficiency by AGL13 and SEP3 proteins suggest a similar function for AGL13 and E functional SEP proteins. Additional fluorescence resonance energy transfer (FRET) analysis indicated that, similar to SEP proteins, AGL13 is able to interact with AG to form quartet-like complexes (AGL13-AG) 2 and interact with AG-AP3-PI to form a higher-order heterotetrameric complex (AGL13-AG-AP3-PI). Through these complexes, AGL13 and AG could regulate the expression of similar downstream genes involved in pollen morphogenesis, anther cell layer formation and the ovule development. AGL13 also regulates AG/AP3/PI expression by positive regulatory feedback loops and suppresses its own expression through negative regulatory feedback loops by activating AGL6, which acts as a repressor of AGL13. Our data suggest that AGL13 is likely a putative ancestor for the E functional genes which specifies male and female gametophyte morphogenesis in plants during evolution.
Background: The sodium-glucose co-transporter-2 (SGLT-2) inhibitor dapagliflozin improves cardiovascular outcomes in patients with type 2 diabetes in a manner that is partially independent of its hypoglycemic effect. These observations suggest that it may exert a cardioprotective effect by another mechanism. This study explored the effects of dapagliflozin on myocardial ischemia/reperfusion injury in a mouse model.Materials and Methods: For the in vivo I/R studies, mice received 40 mg/kg/d dapagliflozin, starting 7 days before I/R. Evans Blue/TTC double-staining was used to determine the infarct size. Serum levels of cTnI, CK-MB, and LDH were measured. Inflammation, autophagy protein expression, and caspase-1 activity changes were measured at the protein level. Primary cardiomyocytes were used to investigate the direct effect of dapagliflozin on cardiomyocytes and to verify whether they have the same effect as observed in in vivo experiments.Result: A high dose of dapagliflozin significantly reduced infarct size and decreased the serum levels of cTnI, CK-MB, and LDH. Dapagliflozin also reduced serum levels of IL-1β, reduced expression of myocardial inflammation-related proteins, and inhibited cardiac caspase-1 activity. The treatment restored autophagy flux and promoted the degradation of autophagosomes. Relief of inflammation relied on autophagosome phagocytosis of NLRP3 and autophagosome clearance after lysosome improvement. 10 μM dapagliflozin reduced intracellular Ca2+ and Na+ in primary cardiomyocytes, and increasing NHE1 and NCX expression mitigated dapagliflozin effects on autophagy.Conclusion: Dapagliflozin protects against myocardial ischemia/reperfusion injury independently of its hypoglycemic effect. High-dose dapagliflozin pretreatment might limit NLRP3 inflammasome activation and mediate its selective autophagy. Dapagliflozin directly acts on cardiomyocytes through NHE1/NCX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.