Noroviruses are a primary cause of gastroenteritis and foodborne illness with cases that affect millions of people worldwide each year. Inexpensive tests for norovirus that do not require sophisticated laboratory equipment are important tools for ensuring that patients receive timely treatment and for containing outbreaks. Herein, we demonstrate a low-cost colorimetric assay that detects norovirus from clinical samples by combining paper-based cell-free transcription–translation systems, isothermal amplification and virus enrichment by synbodies. Using isothermal amplification and cell-free RNA sensing with toehold switches, we demonstrate that the assay enables detection of norovirus GII.4 Sydney from stool down to concentrations of 270 aM in reactions that can be directly read by eye. Furthermore, norovirus-binding synbodies and magnetic beads are used to concentrate the virus and provide a 1000-fold increase in assay sensitivity extending its detection limit to 270 zM. These results demonstrate the utility of paper-based cell-free diagnostic systems for identification of foodborne pathogens and provide a versatile diagnostic assay that can be applied to the concentration, amplification and detection of a broad range of infectious agents.
Antibody-dependent enhancement (ADE) has been reported in several virus infections including dengue fever virus, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronavirus infection. To study whether ADE is involved in COVID-19 infections, in vitro pseudotyped SARS-CoV-2 entry into Raji cells, K562 cells, and primary B cells mediated by plasma from recovered COVID-19 patients were employed as models. The enhancement of SARS-CoV-2 entry into cells was more commonly detected in plasma from severely-affected elderly patients with high titers of SARS-CoV-2 spike protein-specific antibodies. Cellular entry was mediated via the engagement of FcγRII receptor through virus-cell membrane fusion, but not by endocytosis. Peptide array scanning analyses showed that antibodies which promote SARS-CoV-2 infection targeted the variable regions of the RBD domain. To further characterize the association between the spike-specific antibody and ADE, an RBD-specific monoclonal antibody (7F3) was isolated from a recovered patient, which potently inhibited SARS-Cov-2 infection of ACE-2 expressing cells and also mediated ADE in Raji cells. Site-directed mutagenesis the spike RBD domain reduced the neutralization activity of 7F3, but did not abolish its binding to the RBD domain. Structural analysis using cryo-electron microscopy (Cryo-EM) revealed that 7F3 binds to spike proteins at a shift-angled pattern with one up and two down RBDs, resulting in partial overlapping with the receptor binding motif (RBM), while a neutralizing monoclonal antibody that lacked ADE activity binds to spike proteins with three up RBDs, resulting in complete overlapping with RBM. Our results revealed that ADE mediated by SARS-CoV-2 spike-specific antibodies could result from binding to the receptor in slightly different pattern from antibodies mediating neutralizations. Studies on ADE using antibodies from recovered patients via cell biology and structural biology technology could be of use for developing novel therapeutic and preventive measures for control of COVID-19 infection.
The ability to identify single-nucleotide mutations is critical for probing cell biology and for precise detection of disease. However, the small differences in hybridization energy provided by single-base changes makes identification of these mutations challenging in living cells and complex reaction environments. Here, we report a class of de novodesigned prokaryotic riboregulators that provide ultraspecific RNA detection capabilities in vivo and in cell-free transcription-translation reactions. These single-nucleotide-specific programmable riboregulators (SNIPRs) provide over 100-fold differences in gene expression in response to target RNAs differing by a single nucleotide in E. coli and resolve single epitranscriptomic marks in vitro. By exploiting the programmable SNIPR design, we implement an automated design algorithm to develop riboregulators for a range of mutations associated with cancer, drug resistance, and genetic disorders. Integrating SNIPRs with portable paper-based cell-free reactions enables convenient isothermal detection of cancer-associated mutations from clinical samples and identification of Zika strains through unambiguous colorimetric reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.