We propose using a set of blocks to approximate geologically complex media that cannot be well described by layered models. Interfaces between blocks are triangulated to prevent overlaps or gaps often produced by other techniques, such as B-splines, and to speed up the calculation of intersection points between a ray and block interfaces. We also use a smoothing algorithm to make the normal vector of each triangle continuous at the boundary, so that ray tracing can be performed with stability and accuracy. Based on Fermat's principle, we perturb an initial raypath between two points, generally obtained by shooting, with a segmentally iterative ray-tracing ͑SIRT͒ method. Intersection points on a ray are updated in sequence, instead of simultaneously, because the number of new intersection points may be increased or decreased during the iteration process. To improve convergence speed, we update the intersection points by a first-order explicit formula instead of traditional iterative methods. Only transmitted and reflected waves are considered. Numerical tests demonstrate that the combination of block modeling and segmentally iterative ray tracing is effective in implementing kinematic two-point ray tracing in complex 3D media.
The salt-induced gelation behavior of soy protein isolate (SPI) emulsions was markedly influenced by microbial transglutaminase (TGase) pre-crosslinking. Rheological data showed that when SPI emulsions were incubated with TGase at low concentrations (1 and 3 U/g protein) at 50°C for 30 min prior to gelation, no change in storage modulus (G'), but enhanced resistance to deformation of the gels was observed. Extensive crosslinking by TGase (5 U/g protein) resulted in severe decreases in gel firmness and fracture properties (yielding stress and strain), likely due to the impairment of hydrophobic bonds and the formation of coarse networks. The water-holding capacity of the gels was significantly enhanced by increased concentrations of TGase. Interactive force analysis indicated that non-covalent interactions and disulfide bonds are the primary forces involved in CaSO 4 -induced SPI emulsion gel, but TGase treatment may limit hydrophobic interactions within the gel network. These results are of great potential value for the application of TGase in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.