BackgroundThis study aimed to investigate the therapeutic effect of curcumin in lipopolysaccharide (LPS) induced neonatal acute lung injury (ALI) and the possibly associated molecular mechanisms.Material/MethodsALI neonatal animal model was established by using LPS. Curcumin and/or peroxisome proliferator-activated receptor γ (PPARγ) inhibitor BADGE (bisphenol A diglycidyl ether) were administrated to animals. Lung edema was evaluated by PaO2 and lung wet/dry weight ratio (W/D) measurements. EMSA was used to determine the PPARγ activity. Levels of high-mobility group box 1 (HMGB1), secretory receptor for advanced glycation end products (RAGE), tumor necrosis factor α (TNFα), interleukin 6 (IL6), and transforming growth factor β1 (TGFβ1) in bronchoalveolar lavage fluid (BALF) were examined by ELISA. Western blotting was used to evaluate the expression levels of HMGB1, RAGE, heme oxygenase 1 (HO1), TNFα, IL6, and TGFβ1 in lung tissue.ResultsCurcumin administration significantly improved lung function by increasing PaO2 and decreasing W/D in neonatal ALI rats. Curcumin treatment upregulated the PPARγ activity and expression level of HO1 which were suppressed in lung tissue of neonatal ALI rats. Elevated levels of HMGB1, RAGE, TNFα, IL6, and TGFβ1 in both lung tissue and BALF from neonatal ALI rats were decreased dramatically by curcumin treatment. PPARγ inhibitor BADGE administration impaired curcumin’s alleviation on lung edema, inhibitory effects on inflammatory cytokine expression and recovery of PPARγ/HO1 signaling activation.ConclusionsCurcumin alleviated lung edema in LPS-induced ALI by inhibiting inflammation which was induced by PPARγ/HO1 regulated-HMGB1/RAGE pro-inflammatory pathway.
BackgroundAcute lung injury (ALI) is a life-threatening complication of sepsis. Tetramethylpyrazine (TMP) has been used in the clinical treatment of vascular diseases. The aim of this study was to investigate the therapeutic effects and possible involved mechanisms on ALI.Material/MethodsCecal ligation and puncture (CLP) was used to establish a sepsis model in rats. TMP at various dosages were administrated to rats using a intragastric method. Animal survival rate was calculated. The lung functions were evaluated by lung weight/dry weight ratio (W/D), PaO2, dynamic compliance (DC), and airway resistance index (ARI). Pulmonary microvascular endothelial cells (PMVECs) were isolated from lungs harvested from rats with sepsis. TUNEL assay was used to detect apoptosis. Protein expression and phosphorylation levels were assessed by western blotting.ResultsTMP administration increased the survival rate of septic rats. TMP also decreased W/D and DC, but increased PaO2 and ARI in septic rats. Moreover, PMVECs apoptosis was inhibited in septic rats that received TMP treatment. The expression levels of GRP78, ATF4, caspase-12, active caspase-3, as well as the phosphorylation levels of PERK and eIF2α were suppressed in PMVECs isolated from TMP-treated septic rats.ConclusionsTMP alleviated sepsis-induced ALI by suppressing PMVECs apoptosis via PERK/eIF2α/ATF4/CHOP apoptotic signaling in endoplasmic reticulum stress.
Background Due to the increased risk of viral infection and the severe shortage of medical resources during the pandemic of COVID-19, most hospitals in the epidemic areas significantly reduced non-emergency admissions and services, if not closed. As a result, it has been difficult to treat cancer patients on time, which adversely affects their prognosis. To address this problem, cancer centers must develop a strategic plan to manage both inpatients and outpatients during the pandemic, provide them with the necessary treatment, and at the same time prevent the spread of the virus among patients, visitors and medical staff. Methods Based upon the epidemic situation in Zhejiang Province, China, the number of running non-emergency medical wards in the Zhejiang Cancer Hospital was gradually increased in a controlled manner. All staff of the hospital received COVID-19 preventive training and was provided with three different levels of protection according to the risks of their services. Only patients without a known history of SARS-CoV-2 contact were eligible to schedule an appointment. Body temperature was measured on all patients upon their arrival at the hospital. Chest CT image, blood cell counting and travel/contact history were investigated in patients with fever. Respiratory tract samples, such as sputum and throat swabs, from all patients, including those clinically suspected of SARS-CoV-2 infection, were collected for nucleic acid detection of SARS-CoV-2 before treatment. Results A total of 3697 inpatients and 416 outpatients seeking cancer treatment were enrolled from February 1 to April 3, 2020, in compliance with the hospital’s infection-control interventions. The clinicopathological parameters of the patients were summarized herein. 4237 samples from 4101 patients produced negative RNA testing results. Four clinically suspected patients all presented negative RNA test results and were excluded from the SARS-CoV-2 infection through follow-up retesting and monitoring. Seven patients with only N-gene positive results were retested, followed by CT scan and SARS-CoV-2 contact history investigation. All of them were finally diagnosed as non-infected patients. There was one outpatient who was confirmed positive by virus RNA test and then followed up. She might be an asymptomatic laboratory-confirmed case. During the study period, there was no SARS-CoV-2 infection among staff, patients and escorts of patients in the Zhejiang Cancer Hospital. Conclusion This study suggested our infection-control interventions, including viral nucleic acid test, could be used as a reliable method to screen cancer patients in the area with moderate COVID-19 prevalence. Cancer may not be a high-risk factor of SARS-CoV-2 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.