In this paper, we present the Functional Catalogue (FunCat), a hierarchically structured, organism-independent, flexible and scalable controlled classification system enabling the functional description of proteins from any organism. FunCat has been applied for the manual annotation of prokaryotes, fungi, plants and animals. We describe how FunCat is implemented as a highly efficient and robust tool for the manual and automatic annotation of genomic sequences. Owing to its hierarchical architecture, FunCat has also proved to be useful for many subsequent downstream bioinformatic applications. This is illustrated by the analysis of large-scale experiments from various investigations in transcriptomics and proteomics, where FunCat was used to project experimental data into functional units, as 'gold standard' for functional classification methods, and also served to compare the significance of different experimental methods. Over the last decade, the FunCat has been established as a robust and stable annotation scheme that offers both, meaningful and manageable functional classification as well as ease of perception.
The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis.
NF-kappa B is a multiprotein complex that can activate a great variety of genes involved in early defence reactions of higher organisms. In nonstimulated cells, NF-kappa B resides in the cytoplasm in an inactive complex with the inhibitor I kappa B. Pathogenic stimuli cause release of I kappa B and allow NF-kappa B to enter the nucleus, bind to DNA control elements and, thereby, induce the synthesis of mRNA. A puzzling feature of NF-kappa B is that its activation is triggered by a great variety of agents. These include the cytokines interleukin-1 and tumor necrosis factor, viruses, double-stranded RNA, endotoxins, phorbol esters, UV light and ionizing radiation. We recently found that also low concentrations of H2O2 activate NF-kappa B and that various antioxidants prevent the induction by H2O2. Subsequent analysis revealed that antioxidants not only suppress the activation of NF-kappa B by H2O2 but by all other inducers tested so far. In this review, we will discuss the evidences that NF-kappa B is an oxidative stress-responsive transcription factor of higher eukaryotic cells.
The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook wholegenome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.