One of the central issues in space mapping optimization is the quality of the underlying coarse models and surrogates. Whether a coarse model is sufficiently similar to the fine model may be critical to the performance of the space mapping optimization algorithm and a poor coarse model may result in lack of convergence. Although similarity requirements can be expressed with proper analytical conditions, it is difficult to verify such conditions beforehand for real-world engineering optimization problems. In this paper, we provide methods of assessing the quality of coarse/surrogate models. These methods can be used to predict whether a given model might be successfully used in space mapping optimization, to compare the quality of different coarse models, or to choose the proper type of space mapping which would be suitable to a given engineering design problem. Our quality estimation methods are derived from convergence results for space mapping algorithms. We provide illustrations and several practical application examples.
. Abstract-We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis and yield-driven design. We illustrate our results using a capacitively-loaded two-section impedance transformer, a single-resonator waveguide filter and a six-section H-plane waveguide filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.