The purpose of the study was to see if nematodes (Caenorhabditis elegans, Caenorhabditis briggsae, and Pelodera strongyloides) produce endocannabinoids; i.e., anandamide (AEA) and 2-arachidonoylglycerol (2-AG). In this study, AEA and 2-AG were identified as endogenous products from nematodes by using electrospray-ionization ion-trap MS/MS (ESI-IT-MS) experiments operated in the positive-ionization mode. Endocannabinoids were identified by product ion scan and concentrations were measured by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Both AEA and 2-AG were identified in all of the nematode samples, even though these species lack known cannabinoid receptors. Neither AEA nor 2-AG were detected in the fat-3 mutant of C. elegans, which lacks the necessary enzyme to produce arachidonic acid, the fatty acid precursor of these endocannabinoids.
Small ubiquitin-related modifiers (SUMOs) are important regulator proteins. Caenorhabditis elegans contains a single SUMO ortholog, SMO-1, necessary for the reproduction of C. elegans. In this study, we constructed transgenic C. elegans strains expressing human SUMO-1 under the control of pan-neuronal (aex-3) or pan-muscular (myo-4) promoter and SUMO-2 under the control of myo-4 promoter. Interestingly, muscular overexpression of SUMO-1 or -2 resulted in morphological changes of the posterior part of the nematode. Movement, reproduction and aging of C. elegans were perturbed by the overexpression of SUMO-1 or -2. Genome-wide expression analyses revealed that several genes encoding components of SUMOylation pathway and ubiquitin-proteasome system were upregulated in SUMO-overexpressing nematodes. Since muscular overexpression of SMO-1 also brought up reproductive and mobility perturbations, our results imply that the phenotypes were largely due to an excess of SUMO, suggesting that a tight control of SUMO levels is important for the normal development of multicellular organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.