Crossing-over ensures accurate chromosome segregation during meiosis, and every pair of chromosomes obtains at least one crossover, even though the majority of recombination sites yield non-crossovers. A putative regulator of crossing-over is RNF212, which is associated with variation in crossover rates in humans. We show that mouse RNF212 is essential for crossing-over, functioning to couple chromosome synapsis to the formation of crossover-specific recombination complexes. Selective localization of RNF212 to a subset of recombination sites is shown to be a key early step in the crossover designation process. RNF212 acts at these sites to stabilize meiosis-specific recombination factors, including the MutSγ complex (MSH4-MSH5). We infer that selective stabilization of key recombination proteins is a fundamental feature of meiotic crossover control. Haploinsufficiency indicates that RNF212 is a limiting factor for crossover control and raises the possibility that human alleles may alter the amount or stability of RNF212 and be risk factors for aneuploid conditions.
SummaryNitrogen starvation is one of the signals that induce Candida albicans , the major fungal pathogen of humans, to switch from yeast to filamentous growth. In response to nitrogen starvation, C. albicans expresses the MEP1 and MEP2 genes, which encode two ammonium permeases that enable growth when limiting concentrations of ammonium are the only available nitrogen source. In addition to its role as an ammonium transporter, Mep2p, but not Mep1p, also has a central function in the induction of filamentous growth on a solid surface under limiting nitrogen conditions. When ammonium is absent or present at low concentrations, Mep2p activates both the Cph1p-dependent mitogen-activated protein (MAP) kinase pathway and the cAMP-dependent signalling pathway in a Ras1p-dependent fashion via its C-terminal cytoplasmic tail, which is essential for signalling but dispensable for ammonium transport. In contrast, under ammonium-replete conditions that require transporter-mediated uptake Mep2p is engaged in ammonium transport and signalling is blocked such that C. albicans continues to grow in the budding yeast form. Mep2p is a less efficient ammonium transporter than Mep1p and is expressed at much higher levels, a distinguishing feature that is important for its signalling function. At sufficiently high concentrations, ammonium represses filamentous growth even when the signalling pathways are artificially activated. Therefore, C. albicans has established a regulatory circuit in which a preferred nitrogen source, ammonium, also serves as an inhibitor of morphogenesis that is taken up into the cell by the same transporter that mediates the induction of filamentous growth in response to nitrogen starvation.
Poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib has been approved for treatment of advanced ovarian cancer associated with BRCA1 and BRCA2 mutations. BRCA1- and BRCA2-mutated cells, which are homologous recombination (HR) deficient, are hypersensitive to PARPi through the mechanism of synthetic lethality. Here we examine the effect of PARPi on HR-proficient cells. Olaparib pretreatment, PARP1 knockdown or Parp1 heterozygosity of Brca2cko/ko mouse embryonic stem cells (mESCs), carrying a null (ko) and a conditional (cko) allele of Brca2, results in viable Brca2ko/ko cells. PARP1 deficiency does not restore HR in Brca2ko/ko cells, but protects stalled replication forks from MRE11-mediated degradation through its impaired recruitment. The functional consequence of Parp1 heterozygosity on BRCA2 loss is demonstrated by a significant increase in tumorigenesis in Brca2cko/cko mice. Thus, while olaparib efficiently kills BRCA2-deficient cells, we demonstrate that it can also contribute to the synthetic viability if PARP is inhibited before BRCA2 loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.