Based on the projected three-dimensional equivalence of conserved amino acids in the catalytic domains of DNA polymerases, we propose Arg 110 of MuLV RT to be an important participant in the catalytic mechanism of MuLV RT. In order to obtain evidence to support this proposition and to assess the functional importance of Arg 110, we carried out site directed mutagenesis of Arg 110 and replaced it with Lys, Ala, and Glu. The mutant enzymes were characterized with respect to their kinetic parameters, ability to bind template-primers, and the mode of DNA synthesis. All the three substitutions at 110 position resulted in severe loss of polymerase activity without any significant effect on the RNase H function. In spite of an approximately 1000-fold reduction in kcat of polymerase activity with three mutant enzymes, no significant reduction in the affinities for either template-primer or dNTP substrates was apparent. Mutant enzymes also did not exhibit significant sulfur elemental effect, implying that the chemical step, i.e., phosphodiester bond formation, was not defective. Examination of the mode of DNA synthesis by the mutant enzymes indicated a shift from processive to the distributive mode of synthesis. The mutants of R110 also displayed significant loss of pyrophosphorolysis activity. Furthermore, the time course of primer extension with mutant enzymes indicated severe reduction in the rates of addition of the first nucleotide and even further reduction in the addition of the second nucleotide. These results suggest that the rate limiting step for the mutant enzymes may be before and after the phosphodiester bond formation. Based on these results, we propose that Arg 110 of MuLV RT participates in the conformational change steps prior to and after the chemical step of polymerase reaction.
The three-dimensional structure of bacteriophage T7 DNA polymerase reveals the presence of a loop of 4 aa (residues 401-404) within the DNA-binding groove; this loop is not present in other members of the DNA polymerase I family. A genetically altered T7 DNA polymerase, T7 pol⌬401-404, lacking these residues, has been characterized biochemically. The polymerase activity of T7 pol⌬401-404 on primed M13 single-stranded DNA template is one-third of the wild-type enzyme and has a 3-to-5 exonuclease activity indistinguishable from that of wild-type T7 DNA polymerase. T7 pol⌬401-404 polymerizes nucleotides processively on a primed M13 single-stranded DNA template. T7 DNA polymerase cannot initiate de novo DNA synthesis; it requires tetraribonucleotides synthesized by the primase activity of the T7 gene 4 protein to serve as primers. T7 primase-dependent DNA synthesis on single-stranded DNA is 3-to 6-fold less with T7 pol⌬401-404 compared with the wild-type enzyme. Furthermore, the altered polymerase is defective (10-fold) in its ability to use preformed tetraribonucleotides to initiate DNA synthesis in the presence of gene 4 protein. The location of the loop places it in precisely the position to interact with the tetraribonucleotide primer and, presumably, with the T7 gene 4 primase. Gene 4 protein also provides helicase activity for the replication of duplex DNA. T7 pol⌬401-404 and T7 gene 4 protein catalyze strand-displacement DNA synthesis at nearly the same rate as does wild-type polymerase and T7 gene 4 protein, suggesting that the coupling of helicase and polymerase activities is unaffected.
The YXDD motif is highly conserved in the reverse transcriptase family. The variable X residue is occupied by valine and methionine in MuLV RT and HIV-1 RT, respectively. Previous studies have shown that Tyr 222, the Y residue of the YXDD motif in MuLV RT, constitutes a major component of the fidelity center of the enzyme [Kaushik, N., Singh, K., Alluru, I., and Modak, M. J. (1999) Biochemistry 38, 2617-2627]. In this work, we present evidence that reverse transcriptases containing valine in the "X" position of the YXDD motif generally catalyze DNA synthesis with greater fidelity than those containing methionine or alanine. In the MuLV RT system, the two mutants V223M and V223A exhibited an overall reduced fidelity of DNA synthesis, specifically for RNA-templated reactions. Further analysis revealed that these mutants exhibit a higher efficiency of misinsertion on MS2 RNA than the wild-type enzyme for every mispair tested. However, unlike HIV-1 RT, the insensitivity of the wild-type MuLV RT to all four ddNTPs remained unchanged by mutation of V223 to Met or Ala. A 3D molecular model of the ternary complex of MuLV RT, template primer, and dNTP suggests that Val 223 along with its neighboring Tyr 222 stabilizes the substrate binding pocket via hydrophobic interactions with the dNTP substrate and template-primer.
The DNA polymerase encoded by gene 5 (gp5) of bacteriophage T7 has low processivity, dissociating after the incorporation of a few nucleotides. Upon binding to its processivity factor, Escherichia coli thioredoxin (Trx), the processivity is increased to approximately 800 nucleotides per binding event. Several interactions between gp5/Trx and DNA are required for processive DNA synthesis. A basic region in T7 DNA polymerase (residues K587, K589, R590, and R591) is located in proximity to the 5 overhang of the template strand. Replacement of these residues with asparagines results in a threefold reduction of the polymerization activity on primed M13 single-stranded DNA. The altered gp5/Trx exhibits a 10-fold reduction in its ability to support growth of T7 phage lacking gene 5. However, T7 phages that grow at a similar rate provided with either wild-type or altered polymerase emerge. Most of the suppressor phages contain genetic changes in or around the coding region for gene 3, an endonuclease. Altered gene 3 proteins derived from suppressor strains show reduced catalytic activity and are inefficient in complementing growth of T7 phage lacking gene 3. Results from this study reveal that defects in processivity of DNA polymerase can be suppressed by reducing endonuclease activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.