Singlet fission generates multiple excitons from a single photon, which in theory can result in solar cell efficiencies with values above the Shockley-Queisser limit. Understanding the molecular structural dynamics during singlet fission will help to fabricate efficient organic photovoltaic devices. Here we use femtosecond stimulated Raman spectroscopy to reveal the structural evolution during the triplet separation in rubrene. We observe vibrational signatures of the correlated triplet pair, as well as shifting of the vibrational frequencies of the 1430 and 1542 cm excited state modes, which increase by more than 25 cm in 5 ps. Our results indicate that the correlated pair separation into two individual triplets occurs concurrently with the loss of electron density from the tetracene backbone in rubrene. This study provides new insights into the triplet separation process and proves the utility of structurally sensitive ultrafast vibrational techniques to understand the mechanism of singlet fission.
Singlet fission leads to the formation of two separate triplet T1 excitons from an initial singlet S1 exciton through 1(TT) and 1(T...T), multiexcitonic intermediates that retain singlet character. Its ability to achieve external quantum efficiencies higher than 100% made it an attractive candidate for optoelectronic device applications. However, singlet fission has not been applied widely despite having been investigated by a myriad of spectroscopic methods, in part due to our poor understanding of how to optimize molecular structure and packing in chromophores well-suited to large-scale production. Vibrational spectroscopies provide a solution, because they directly probe nuclear motions, allowing us to monitor evolving structural changes in molecules undergoing singlet fission, thus providing us with roadmaps to design molecules suitable for optoelectronic applications. This Perspective reviews the contributions and analyzes the future directions of vibrational spectroscopies to the advancement in our knowledge about the mechanisms and rational designing of chromophores undergoing efficient singlet fission.
In the race to find efficient singlet fission materials, picking a winner is not easy. Femtosecond stimulated Raman spectroscopy can help us choose the best candidates, as demonstrated here in choosing from a library of rubrene derivatives.
Femtosecond stimulated Raman spectroscopy (FSRS) is a useful technique for uncovering chemical reaction dynamics by acquiring high-resolution Raman spectra with ultrafast time resolution. However, in FSRS, it can be challenging to discern Raman features from signals arising from transient absorption and other four-wave mixing pathways. To overcome this difficulty, we combine the principles of shifted excitation Raman difference spectroscopy with a simple fixed frequency comb to perform dualfrequency Raman pump FSRS. Through the addition of only two mirrors and a slit to the standard FSRS setup, this method provides Raman spectra at two different excitation wavelengths that can be processed by an automated algorithm to reconstruct the Raman spectrum. Here, we demonstrate the utility of dual-frequency Raman pump FSRS to easily identify Raman signatures by visual inspection for excited-state and ground-state spectra, both on-and off-resonance. We show that previously assigned short-lived vibrations of photoexcited β-carotene are actually not vibrational in nature. We also use crystalline betaine-30 as a challenging test case for this method, as the FSRS spectra contain a number of narrow transient vibronic and non-SRS features. By reliably reducing interference from background signals, the interpretation is substantially more quantitative and enables the future study of new systems, particularly those with small Raman cross-sections or solid-state samples with narrow vibronic features.
Femtosecond stimulated Raman spectroscopy (FSRS) is a chemically specific vibrational technique that has the ability to follow structural dynamics during photoinduced processes such as charge transfer on the ultrafast timescale. FSRS has a strong background in following structural dynamics and elucidating chemical mechanisms; however, its use with solid-state materials has been limited. As photovoltaic and electronic devices rely on solid-state materials, having the ability to track the evolving dynamics during their charge transfer and transport processes is crucial. Following the structural dynamics in these solid-state materials will lead to the identification of specific chemical structures responsible for various photoinduced charge transfer reactions, leading to a greater understanding of the structure–function relationships needed to improve upon current technologies. Isolating the specific nuclear motions and molecular structures that drive a desired physical process will provide a chemical blueprint, leading to the rational design and fabrication of efficient electronic and photovoltaic devices. In this perspective, we discuss technical challenges and experimental developments that have facilitated the use of FSRS with solid-state samples, explore previous studies that have identified structure–function relationships in charge transfer reactions, and analyze the future developments that will broaden and advance the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.