A fair curve with exceptional properties, called the log-aesthetic curves (LAC) has been extensively studied for aesthetic design implementations. However, its implementation in terms of functional design, particularly hydrodynamic design, remains mostly unexplored. This study examines the effect of the shape parameter α of LAC on the drag generated in an incompressible fluid flow, simulated using a semi-implicit backward difference formula coupled with P2−P1 Taylor–Hood finite elements. An algorithm was developed to create LAC hydrofoils that were used in this study. We analyzed the drag coefficients of 47 LAC hydrofoils of three sizes with various shapes in fluid flows with Reynolds numbers of 30, 40, and 100, respectively. We found that streamlined LAC shapes with negative α values, of which curvature with respect to turning angle are almost linear, produce the lowest drag in the incompressible flow simulations. It also found that the thickness of LAC objects can be varied to obtain similar drag coefficients for different Reynolds numbers. Via cluster analysis, it is found that the distribution of drag coefficients does not rely solely on the Reynolds number, but also on the thickness of the hydrofoil.
The log-aesthetic curve (LAC) is a family of aesthetic curves with linear logarithmic curvature graphs (LCGs). It encompasses well-known aesthetic curves such as clothoid, logarithmic spiral, and circle involute. LAC has been playing a pivotal role in aesthetic design. However, its application for functional design is an uncharted territory, e.g. the relationship between LAC and fluid flow patterns may aid in designing better ship hulls and breakwaters. We address this problem by elucidating the relationship between LAC and flow patterns in terms of streamlines at a steady state. We discussed how LAC pathlines form under the influence of pressure gradient via Euler's equation and how LAC streamlines are formed in a special case. LCG gradient ($\alpha $) for implicit and explicit functions is derived, and it is proven that the LCG gradient at the inflection points of explicit functions is always 0 when its third derivative is nonzero. Due to the complexity of the parametric representation of LAC, it is almost impossible to derive the general representation of LAC streamlines. We address this by analyzing the streamlines formed by incompressible flow around an airfoil-like obstacle generated with LAC having various shapes, ${\alpha _r} = \ \{ { - 20,{\rm{\ }} - 5,{\rm{\ }} - 1,{\rm{\ }} - 0.5,{\rm{\ }} - 0.15,{\rm{\ }}0,{\rm{\ }}1,{\rm{\ }}2,{\rm{\ }}3,{\rm{\ }}4,{\rm{\ }}20} \}$, and simulating the streamlines using FreeFem++ reaching a steady state. We found that the LCG gradient of the resultant streamlines is close to that of a clothoid. When the obstacle shape is almost the same as that of a circle ($\alpha \ = \ 20$), the streamlines adjacent to the obstacles have numerous curvature extrema despite nearing steady state. The flow speed variation is the lowest for $\alpha \ = \ - 1.43$ and gets higher as $\alpha$ is increased or decreased from $\alpha \ = \ - 1.43$.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.