We have examined the enzymatic activity of an uncleavable procaspase-3 mutant (D9A/D28A/D175A), which contains the wild-type catalytic residues in the active site. The results are compared to those for the mature caspase-3. Although at pH 7.5 and 25 degrees C the K(m) values are similar, the catalytic efficiency (k(cat)) is approximately 130-fold lower in the zymogen. The mature caspase-3 demonstrates a maximum activity at pH 7.4, whereas the maximum activity of procaspase-3 occurs at pH 8.3. The pK(a) values of both catalytic groups, H121 and C163, are shifted to higher pH for procaspase-3. We developed limited proteolysis assays using trypsin and V8 proteases, and we show that these assays allow the examination of amino acids in three of five active site loops. In addition, we examined the fluorescence emission of the two tryptophanyl residues in the active site over the pH range of 2.5-9 as well as the response to several quenching agents. Overall, the data suggest that the major conformational change that occurs upon maturation results in formation of the loop bundle among loops L4, L2, and L2'. The pK(a) values of both catalytic groups decrease as a result of the loop movements. However, loop L3, which comprises the bulk of the substrate binding pocket, does not appear to be unraveled and solvent-exposed, even at lower pH.
We have examined the folding and assembly of a catalytically inactive mutant of procaspase-3, a homodimeric protein that belongs to the caspase family of proteases. The caspase family, and especially caspase-3, is integral to apoptosis. The equilibrium unfolding data demonstrate a plateau between 3 and 5 M urea, consistent with an apparent three-state unfolding process. However, the midpoint of the second transition as well as the amplitude of the plateau are dependent on the protein concentration. Overall, the data are well described by a four-state equilibrium model in which the native dimer undergoes an isomeration to a dimeric intermediate, and the dimeric intermediate dissociates to a monomeric intermediate, which then unfolds. By fitting the four-state model to the experimental data, we have determined the free energy change for the first step of unfolding to be 8.3 +/- 1.3 kcal/mol. The free energy change for the dissociation of the dimeric folding intermediate to two monomeric intermediates is 10.5 +/- 1 kcal/mol. The third step in the unfolding mechanism represents the complete unfolding of the monomeric intermediate, with a free energy change of 7.0 +/- 0.5 kcal/mol. These results show two important points. First, dimerization of procaspase-3 occurs as a result of the association of two monomeric folding intermediates, demonstrating that procaspase-3 dimerization is a folding event. Second, the stability of the dimer contributes significantly to the conformational free energy of the protein (18.8 of 25.8 kcal/mol).
We have investigated the oligomeric properties of procaspase-3 and a mutant that lacks the pro-domain (called pro-less variant). In addition, we have examined the interactions of the 28 amino acid pro-peptide when added in trans to the pro-less variant. By sedimentation equilibrium studies, we have found that procapase-3 is a stable dimer in solution at 25 degrees C and pH 7.2, and we estimate an upper limit for the equilibrium dissociation constant of approximately 50 nM. Considering the expression levels of caspase-3 in Jurkat cells, we predict that procaspase-3 exists as a dimer in vivo. The pro-less variant is also a dimer, with little apparent change in the equilibrium dissociation constant. Thus, in contrast with the long pro-domain caspases, the pro-peptide of caspase-3 does not appear to be involved in dimerization. Results from circular dichroism, fluorescence anisotropy, and FTIR studies demonstrate that the pro-domain interacts weakly with the pro-less variant. The data suggest that the pro-peptide adopts a beta-structure when in contact with the protein, but it is a random coil when free in solution. In addition, when added in trans, the pro-peptide does not inhibit the activity of the mature caspase-3 heterotetramer. On the other hand, the active caspase-3 does not efficiently hydrolyze the pro-domain at the NSVD(9) sequence as occurs when the pro-peptide is in cis to the protease domain. Based on these results, we propose a model for maturation of the procaspase-3 dimer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.