VE-cadherin is an endothelial-specific cadherin that plays a central role in vascular barrier function and angiogenesis. The cytoplasmic domain of VE-cadherin is linked to the cytoskeleton through interactions with the armadillo family proteins β-catenin and plakoglobin. Growing evidence indicates that β-catenin and plakoglobin play important roles in epithelial growth and morphogenesis. To test the role of these proteins in vascular cells, a replication-deficient retroviral system was used to express intercellular junction proteins and mutants in the human dermal microvascular endothelial cell line (HMEC-1). A mutant VE-cadherin lacking an adhesive extracellular domain disrupted endothelial barrier function and inhibited endothelial growth. In contrast, expression of exogenous plakoglobin or metabolically stable mutants of β-catenin stimulated HMEC-1 cell growth, which suggests that the β-catenin signaling pathway was active in HMEC-1 cells. This possibility was supported by the finding that a dominant-negative mutant of the transcription factor TCF-4, designed to inhibit β-catenin signaling, also inhibited HMEC-1 cell growth. These observations suggest that intercellular junction proteins function as components of an adhesion and signaling system that regulates vascular barrier function and growth.
Dopaminergic anti-parkinsonian medications, such as levodopa (LD) cause drug-induced dyskinesias (DID) in majority of patients with Parkinson's disease (PD). Mucuna pruriens, a legume extensively used in Ayurveda to treat PD, is reputed to provide anti-parkinsonian benefits without inducing DID. We compared the behavioral effects of chronic parenteral administration of a water extract of Mucuna pruriens seed powder (MPE) alone without any additives, MPE combined with the peripheral dopa-decarboxylase inhibitor (DDCI) benserazide (MPE+BZ), LD +BZ and LD alone without BZ in the hemiparkinsonian rat model of PD. A battery of behavioral tests assessed by blinded investigators served as outcome measures in these randomized trials. In experiment 1, animals that received LD+BZ or MPE+BZ at high (6mg/Kg) and medium (4mg/Kg) equivalent doses demonstrated significant alleviation of parkinsonism, but, developed severe dosedependent DID. LD+BZ at low doses (2mg/Kg) did not provide significant alleviation of parkinsonism. In contrast, MPE+BZ at an equivalent low dose significantly ameliorated parkinsonism. In experiment 2, MPE without any additives (12mg/Kg and 20mg/Kg LD equivalent dose) alleviated parkinsonism with significantly less DID compared to LD+BZ or MPE +BZ. In experiment 3, MPE without additives administered chronically provided long-term antiparkinsonian benefits without causing DID. In experiment 4, MPE alone provided significantly more behavioral benefit when compared to the equivalent dose of synthetic LD alone without BZ. In experiment 5, MPE alone reduced the severity of DID in animals initially primed with LD+BZ. These findings suggest that Mucuna pruriens contains water soluble ingredients that either have an intrinsic DDCI-like activity or mitigate the need for an add-on DDCI to ameliorate parkinsonism. These unique long-term antiparkinsonian effects of a parenterally administered water extract of Mucuna pruriens seed powder may provide a platform for future drug discoveries and novel treatment strategies in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.