Viruses adopt strategies to e ciently utilize their compact genome. Members of the family Paramyxoviridae, exhibit a cotranscriptional RNA editing mechanism wherein polymerase stuttering generates accessory proteins from Phosphoprotein (P) gene. Newcastle disease virus (NDV), an avian paramyxovirus, expresses two accessory proteins, V and W, by RNA editing. While P and V proteins are well studied, very little is known about W protein. Recent studies con rmed W protein expression in NDV and the unique subcellular localization of W proteins of virulent and avirulent NDV. We characterized the W protein of NDV strain Komarov, a moderately virulent vaccine strain. W mRNA expression ranged between 7 and 9% of total P gene transcripts similar to virulent NDV. However, W protein expression, detectable by 6 hours, peaked at 24 hours and dropped by 48 hours post infection in DF1 cells indicating a kinetically regulated expression by the virus. The W protein localized in the nucleus and by mutations, a strong nuclear localization signal was identi ed in the C-terminal region of W protein. The viral growth kinetics study suggested neither supplementation of W protein nor subcellular localization pattern of the supplemented W protein in uenced viral replication in vitro similar to that noticed in avirulent NDV. A cytoplasmic mutant of W protein localized in cytoplasm unlike speci c mitochondrial colocalization as recorded in velogenic NDV strain SG10 indicating a possible role of W protein in determining the viral pathogenicity. This study describes for the rst time, the distinct features of W protein of moderately virulent NDV.
Viruses adopt strategies to efficiently utilize their compact genome. Members of the family Paramyxoviridae, exhibit a cotranscriptional RNA editing mechanism wherein polymerase stuttering generates accessory proteins from Phosphoprotein (P) gene. Newcastle disease virus (NDV), an avian paramyxovirus, expresses two accessory proteins, V and W, by RNA editing. While P and V proteins are well studied, very little is known about W protein. Recent studies confirmed W protein expression in NDV and the unique subcellular localization of W proteins of virulent and avirulent NDV. We characterized the W protein of NDV strain Komarov, a moderately virulent vaccine strain. W mRNA expression ranged between 7 and 9% of total P gene transcripts similar to virulent NDV. However, W protein expression, detectable by 6 hours, peaked at 24 hours and dropped by 48 hours post infection in DF1 cells indicating a kinetically regulated expression by the virus. The W protein localized in the nucleus and by mutations, a strong nuclear localization signal was identified in the C-terminal region of W protein. The viral growth kinetics study suggested neither supplementation of W protein nor subcellular localization pattern of the supplemented W protein influenced viral replication in vitro similar to that noticed in avirulent NDV. A cytoplasmic mutant of W protein localized in cytoplasm unlike specific mitochondrial colocalization as recorded in velogenic NDV strain SG10 indicating a possible role of W protein in determining the viral pathogenicity. This study describes for the first time, the distinct features of W protein of moderately virulent NDV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.