Despite the advancements in the cancer therapeutics, gastric cancer ranks as the second most common cancers with high global mortality rate. Integrative functional genomic investigation is a powerful approach to understand the major dysregulations and to identify the potential targets toward the development of targeted therapeutics for various cancers. Intestinal and diffuse type gastric tumors remain the major subtypes and the molecular determinants and drivers of these distinct subtypes remain unidentified. In this investigation, by exploring the network of gene coexpression association in gastric tumors, mRNA expressions of 20,318 genes across 200 gastric tumors were categorized into 21 modules. The genes and the hub genes of the modules show gastric cancer subtype specific expression. The expression patterns of the modules were correlated with intestinal and diffuse subtypes as well as with the differentiation status of gastric tumors. Among these, G1 module has been identified as a major driving force of diffuse type gastric tumors with the features of (i) enriched mesenchymal, mesenchymal stem cell like, and mesenchymal derived multiple lineages, (ii) elevated OCT1 mediated transcription, (iii) involvement of Notch activation, and (iv) reduced polycomb mediated epigenetic repression. G13 module has been identified as key factor in intestinal type gastric tumors and found to have the characteristic features of (i) involvement of embryonic stem cell like properties, (ii) Wnt, MYC and E2F mediated transcription programs, and (iii) involvement of polycomb mediated repression. Thus the differential transcription programs, differential epigenetic regulation and varying stem cell features involved in two major subtypes of gastric cancer were delineated by exploring the gene coexpression network. The identified subtype specific dysregulations could be optimally employed in developing subtype specific therapeutic targeting strategies for gastric cancer.
The existing large number of gene expression profiles of tumour samples offers a great advantage for the integrative functional genomic exploration of molecular dysregulation in cancers. The clusters of genes (modules) derived from a gastric cancer (GC) coexpression network were explored to understand their clinical and functional significance. Among the modules derived from the GC mRNA expression network, six modules were relatively highly expressed in diffuse type gastric tumours. Elevated expression of genes related to extracellular matrix (ECM), angiogenesis, collagen and intracellular cytoskeletal components and immune response were identified in these modules. ECM-related modules exhibited an inverse correlation with modules representing the expression of immune response genes. A reduced expression of immune response genes was identified as the key factor associated with the aggressive features of diffuse gastric tumours, which is indicative of tumour progression involving the escape from immune surveillance in diffuse tumours. A part of the identified aggressive factors was common between intestinal and diffuse type tumours. The coexpressed modules and their expression patterns delineate the fine transition involved in cancer progression in the later stages of tumours. The identified modules could serve as surrogate gene-sets, indicating the molecular staging of GC aggressiveness with underlying biological interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.