Background and Purpose Adjuvant whole-breast irradiation after breast-conserving surgery, typically delivered over several weeks, is the traditional standard of care for low-risk breast cancer. More recently, hypofractionated, partial-breast irradiation has increasingly become established. Neoadjuvant single-fraction radiotherapy (rt) is an uncommon approach wherein the unresected lesion is irradiated preoperatively in a single fraction. We developed the signal (Stereotactic Image-Guided Neoadjuvant Ablative Radiation Then Lumpectomy) trial, a prospective single-arm trial to test our hypothesis that, for low-risk carcinoma of the breast, the preoperative single-fraction approach would be feasible and safe.Methods Patients presenting with early-stage (T < 3 cm), estrogen-positive, clinically node-negative invasive carcinoma of the breast with tumours at least 2 cm away from skin and chest wall were enrolled. All patients received prone breast magnetic resonance imaging (mri) and prone computed tomography simulation. Treatable patients received a single 21 Gy fraction of external-beam rt (as volumetric-modulated arc therapy) to the primary lesion in the breast, followed by definitive surgery 1 week later. The primary endpoints at 3 weeks, 6 months, and 1 year were toxicity and cosmesis (that is, safety) and feasibility (defined as the proportion of mri-appropriate patients receiving rt).Results Of 52 patients accrued, 27 were successfully treated. The initial dosimetric constraints resulted in a feasibility failure, because only 57% of eligible patients were successfully treated. Revised dosimetric constraints were developed, after which 100% of patients meeting mri criteria were treated according to protocol. At 3 weeks, 6 months, and 1 year after the operation, toxicity, patient- and physician-rated cosmesis, and quality of life were not significantly different from baseline.Conclusions The signal trial presents a feasible method of implementing single-dose preoperative rt in earlystage breast cancer. This pilot study did not identify any significant toxicity and demonstrated excellent cosmetic and quality-of-life outcomes. Future randomized multi-arm studies are required to corroborate these findings.
Background Extracellular vesicles (EVs) are cell-derived lipid bilayer enclosed structures shed from the plasma membrane by all cell types. Evidence of EV presence in biological fluids has led to considerable efforts focused on identifying their cargo and determining their utility as a non-invasive diagnostic platform for cancer. In this study, we identify circulating STEAP1 (six-transmembrane epithelial antigen of the prostate 1)-positive EVs in the plasma of healthy males and prostate cancer patients and evaluate its diagnostic and prognostic significance. Methods STEAP1 was identified on EVs in prostate cancer patient plasma. EVs were validated using electron microscopy, Western blot, nanoparticle tracking analysis, and nanoscale flow cytometry. STEAP1-positive EVs were quantified for 121 males with prostate cancer and 55 healthy age-matched control males. An evaluation of STEAP1 in prostate cancer tissue was also performed using established prostate cancer cohort data (TCGA, MSKCC, and SU2C/PCF Dream Team). Results Evaluation of STEAP1-positive EVs by nanoscale flow cytometry identified a significant increase in prostate cancer patient plasma compared to healthy males. However, no association was found between total STEAP1 EV levels and disease recurrence or overall survival. Cohort data from prostate cancer tissue also found STEAP1 to be elevated in prostate cancer while no significant association with recurrence or overall survival was identified. Conclusions STEAP1 is known to be enriched on the cells of the prostate with potential clinical significance in prostate cancer. Our results identify and quantitate STEAP1-positive EVs in plasma and provide rationale for a STEAP1 EV-based liquid biopsy as a diagnostic strategy in prostate cancer.
To determine the effect of dose fractionation and time delay post-neoadjuvant stereotactic ablative radiotherapy (SABR) on dynamic contrast-enhanced (DCE)-MRI parameters in early stage breast cancer patients. Materials and methods: DCE-MRI was acquired in 17 patients pre-and post-SABR. Five patients were imaged 6-7 days post-21 Gy/1fraction (group 1), six 16-19 days post-21 Gy/1fraction (group 2), and six 16-18 days post-30 Gy/3 fractions every other day (group 3). DCE-MRI scans were performed using half the clinical dose of contrast agent. Changes in the surrounding tissue were quantified using a signalenhancement threshold metric that characterizes changes in signal-enhancement volume (SEV). Tumour response was quantified using K trans and v e (Tofts model) pre-and post-SABR. Significance was assessed using a Wilcoxin signed-rank test. Results: All group 1 and 4/6 group 2 patients' SEV increased post-SABR. All group 3 patients' SEV decreased. The mean K trans increased for group 1 by 76% (p = 0.043) while group 2 and 3 decreased 15% (p = 0.028) and 34% (p = 0.028), respectively. For v e , there was no significant change in Group 1 (p = 0.35). Groups 2 showed an increase of 24% (p = 0.043), and Group 3 trended toward an increase (23%, p = 0.08). Conclusion: Kinetic parameters measured 2.5 weeks post-SABR in both single fraction and three fraction groups were indicative of response but only the single fraction protocol led to enhancement in the surrounding tissue. Our results also suggest that DCE-MRI one-week post-SABR may be too early for response assessment, at least for single fraction SABR, whereas 2.5 weeks appears sufficiently long to minimize confounding acute effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.