Cellular materials with very highly regulated micro-architectures are promising applicant materials for orthopedic medical uses while requiring implants or substituting for bone due to their ability to promote increased cell proliferation and osseointegration. This study focuses on the design of an acetabular cup (AC) cellular implant which was built using a vintiles cellular structure with an internal porosity of 56–87.9% and internal pore dimensions in the range of 600–1200 μm. The AC implant was then optimized for improving mechanical performance to reduce stress shielding by adjusting the porosity to produce stiffness (elastic modulus) to match with the bone, and allowing for bone cell ingrowth. The optimized and non-optimized AC cellular implant was fabricated using the SLM additive manufacturing process. Simulation (finite element analysis, FEA) was carried out and all cellular implants are finally tested under static loading conditions. The result showed that on the finite element model of an optimized implant, cellular has shown 69% higher stiffness than non-optimized. It has been confirmed by experimental work shown that the optimized cellular implant has a 71% higher ultimate compressive strength than the non-optimized counterpart. Finally, we developed an AC implant with mechanical performance adequately close to that of human bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.