An optical metamaterial is a composite in which subwavelength features, rather than the constituent materials, control the macroscopic electromagnetic properties of the material. Recently, properly designed metamaterials have garnered much interest because of their unusual interaction with electromagnetic waves. Whereas nature seems to have limits on the type of materials that exist, newly invented metamaterials are not bound by such constraints. These newly accessible electromagnetic properties make these materials an excellent platform for demonstrating unusual optical phenomena and unique applications such as subwavelength imaging and planar lens design. 'Negative-index materials', as first proposed, required the permittivity, epsilon, and permeability, mu, to be simultaneously less than zero, but such materials face limitations. Here, we demonstrate a comparatively low-loss, three-dimensional, all-semiconductor metamaterial that exhibits negative refraction for all incidence angles in the long-wave infrared region and requires only an anisotropic dielectric function with a single resonance. Using reflection and transmission measurements and a comprehensive model of the material, we demonstrate that our material exhibits negative refraction. This is furthermore confirmed through a straightforward beam optics experiment. This work will influence future metamaterial designs and their incorporation into optical semiconductor devices.
A density-matrix based theory of transport and lasing in quantum-cascade lasers reveals that large disparity between luminescent linewidth and broadening of the tunneling transition changes the design guidelines to favor strong coupling between injector and upper laser level. This conclusion is supported by the experimental evidence.
Radiative emission enhancement using nano-antennas made of hyperbolic metamaterial resonators Applied Physics Letters 105, 123101 (2014) We report on a novel class of semiconductor metamaterials that employ a strongly anisotropic dielectric function to achieve negative refraction in the midinfrared region of the spectrum, ϳ8.5-13 m. We present two types of metamaterials, layered highly doped/undoped heterostructures and quantum well superlattices that are highly anisotropic. Contrary to other optical metamaterials these heterostructure systems are optically thick ͑up to 20 m thick͒, planar, and require no additional fabrication steps beyond the initial growth. Using transmission and reflection measurements and modeling of the highly doped heterostructures, we demonstrate that these materials exhibit negative refraction. For the highly doped quantum well superlattices, we demonstrate anomalous reflection due to the strong anisotropy of the material but a determination of the sign of refraction is still difficult. This new class of semiconductor metamaterials has great potential for waveguiding and imaging applications in the long-wave infrared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.