Viruses rely on their host for reproduction. Here, we made use of genomic and structural information to create a biomass function capturing the amino and nucleic acid requirements of SARS-CoV-2. Incorporating this biomass function into a stoichiometric metabolic model of the human lung cell and applying metabolic flux balance analysis, we identified host-based metabolic perturbations inhibiting SARS-CoV-2 reproduction. Our results highlight reactions in the central metabolism, as well as amino acid and nucleotide biosynthesis pathways. By incorporating host cellular maintenance into the model based on available protein expression data from human lung cells, we find that only few of these metabolic perturbations are able to selectively inhibit virus reproduction. Some of the catalysing enzymes of such reactions have demonstrated interactions with existing drugs, which can be used for experimental testing of the presented predictions using gene knockouts and RNA interference techniques. In summary, the developed computational approach offers a platform for rapid, experimentally testable generation of drug predictions against existing and emerging viruses based on their biomass requirements.
All previous studies on the yeast metabolome have yielded a plethora of information on the components, function and organisation of low molecular mass and macromolecular components involved in the cellular metabolic network. Here we emphasise that an understanding of the global dynamics of the metabolome in vivo requires elucidation of the temporal dynamics of metabolic processes on many time-scales. We illustrate this using the 40 min oscillation in respiratory activity displayed in auto-synchronous continuously grown cultures of Saccharomyces cerevisiae, where respiration cycles between a phase of increased respiration (oxidative phase) and decreased respiration (reductive phase). Thereby an ultradian clock, i.e. a timekeeping device that runs through many cycles during one day, is involved in the co-ordination of the vast majority of events and processes in yeast. Through continuous online measurements, we first show that mitochondrial and redox physiology are intertwined to produce the temporal landscape on which cellular events occur. Next we look at the higher order processes of DNA duplication and mitochondrial structure to reveal that both events are choreographed during the respiratory cycles. Furthermore, spectral analysis using the discrete Fourier transformation of high-resolution (10 Hz) time-series of NAD(P)H confirms the existence of higher frequency components of biological origin and that these follow a scale-free architecture even in stable oscillating modes. A different signal-processing approach using discrete wavelet transformations (DWT) indicates that there is a significant contribution to the overall signal from ` ~5, ~ 10 and ~ 20-minutes cycles and the amplitudes of these cycles are phase-dependent. Further investigation (derivative of Gaussian continuous wavelet transformation) reveals that the observed 20-minutes cycles are actually confined to the reductive phase and consist of two ~15-minutes cycles. Moreover, the 5 and 10-minutes cycles are restricted to the oxidative phase of the cycle. The mitochondrial origin of these signals was confirmed by pulse-injection of the cytochrome c oxidase inhibitor H(2)S. We next discuss how these multi-oscillatory states can impinge on the apparently complex reactome (represented as a phase diagram of 1,650 chemical species that show oscillatory behaviour). We conclude that biological processes can be considerably more comprehensible when dynamic in vivo time-structure is taken into account.
There is an increasing call for the absolute quantification of time-resolved metabolite data. However, a number of technical issues exist, such as metabolites being modified/degraded either chemically or enzymatically during the extraction process. Additionally, capillary electrophoresis mass spectrometry (CE-MS) is incompatible with high salt concentrations often used in extraction protocols. In microbial systems, metabolite yield is influenced by the extraction protocol used and the cell disruption rate. Here we present a method that rapidly quenches metabolism using dry-ice ethanol bath and methanol N-ethylmaleimide solution (thus stabilising thiols), disrupts cells efficiently using bead-beating and avoids artefacts created by live-cell pelleting. Rapid sample processing minimised metabolite leaching. Cell weight, number and size distribution was used to calculate metabolites to an attomol/cell level. We apply this method to samples obtained from the respiratory oscillation that occurs when yeast are grown continuously.
Conventional extraction protocols for yeast have been developed for relatively rapid‐growing low cell density cultures of laboratory strains and often do not have the integrity for frequent sampling of cultures. Therefore, these protocols are usually inefficient for cultures under slow growth conditions or of non‐laboratory strains. We have developed a combined mechanical and chemical disruption procedure using vigorous bead‐beating that can consistently disrupt yeast cells (> 95%), irrespective of cell cycle and metabolic state. Using this disruption technique coupled with quenching, we have developed DNA, RNA and protein extraction protocols that are optimized for a large number of samples from slow‐growing high‐density industrial yeast cultures. Additionally, sample volume, the use of expensive reagents/enzymes, handling times and incubations were minimized. We have tested the reproducibility of our methods using triplicate/time‐series extractions and compared these with commonly used protocols or commercially available kits. Moreover, we utilized a simple flow‐cytometric approach to estimate the mitochondrial DNA copy number. Based on the results, our methods have shown higher reproducibility, yield and quality. Copyright © 2012 John Wiley & Sons, Ltd.
High-resolution data on microbial growth dynamics allow characterisation of microbial physiology, as well as optimisation of genetic alterations thereof. Such data are routinely collected using bench-top spectrophotometers or so-called plate readers. These equipments present several drawbacks: (i) measurements from different devices cannot be compared directly, (ii) proprietary nature of devices makes it difficult for standardisation methods to be developed across devices, and (iii) high costs limit access to devices, which can become a bottleneck for researchers, especially for those working with anaerobic organisms or at higher containment level laboratories. These limitations could be lifted, and data reproducibility improved, if the scientific community could adopt standardised, low-cost and open-source devices that can be built in-house. Here, we present such a device, MicrobeMeter, which is a do-it-yourself (DIY), simple, yet robust photometer with continuous data-logging capability. It is built using 3D-printing and open-source Arduino platform, combined with purpose-built electronic circuits. We show that MicrobeMeter displays linear relation between culture density and turbidity measurement for microbes from different phylogenetic domains. In addition, culture density estimated from MicrobeMeter measurements produced less variance compared against three commercial bench-top spectrophotometers, indicating that its measurements are less affected by the differences in cell types. We show the utility of MicrobeMeter, as a programmable wireless continuous measurement device, by collecting long-term growth dynamics up to 458 hours from aerobic and anaerobic cultures. We provide a full open-source description of MicrobeMeter and its implementation for faster adaptation and future development by the scientific community. The blueprints of the device, as well as ready-to-assemble kit versions are also made available through www.humanetechnologies.co.uk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.