The water conservation function plays a vital role in the land–water cycle. As the “Chinese water tower”, the headwaters of the Yellow River are of great significance to the safety of the Yellow River basin and even the global ecosystem. Taking the grassland ecosystem in the Yellow River source area as the research object, the InVEST water yield model with modified parameters and the ecological value evaluation of the modified equivalent factor method were used to explore the simulated spatio-temporal changes and the value of grassland water conservation from 2001 to 2020. The results show that: (1) the average total amount of water conservation in the source area is 549 × 108 m3, which is 16% of the runoff in the Yellow River basin, with a growth rate of 7.5 mm/year 1 and a contribution rate of 30%; (2) the total ecological value of grassland water conservation in 2020 is USD 340.03 × 108. The proportion of improved grassland in ecological restoration and management is only 0.51%, while the proportion of original alpine meadow reaches 67% and its ecological function and value are irreplaceable; (3) based on the comprehensive indicators of water conservation capacity, value and importance, Qumalai, Chengduo and Maduo counties are ranked as priority areas for the ecological protection of water resources.
Background Taro leaf blight, caused by a severely destructive oomycete fungus Phytophthora colocasiae, is responsible for threatening yield loss worldwide. The pathogen has the ability to germinate and spread rapidly to other plants during favorable conditions resulting in acute decline and even death, causing 100% crop loss. Farmers usually rely on highly toxic systemic fungicides to control the disease, which is effective, but residual effects and resistance of these agrochemicals is still a concern. Recently as returning to nature people tend to use chemical-free products, especially edible stuff produced in organic agriculture. Therefore, the use of bio-pesticides and phytochemicals is gaining special attention by scientists as they are ecofriendly non-hazardous, sustainable, and potent alternatives to control many virulent plant pathogens The present research was conducted to assess the antifungal potential of cinnamon essential oils against P. colocasiae. Materials and methods The essential oils from cinnamon bark were extracted using microwave-assisted hydrodistillation equipment, and then their chemical constituents were evaluated using ATR FTIR spectroscopy. The antifungal potential of essential oil was assessed against mycelium, sporangia, zoospore, leaf necrosis, and corms lesions under laboratory conditions at, 0.156, 0.312, 0.625, 1.25, 2.5, 5.0 mg/mL concentrations. Hymexazol was used as positive control and no essential oil as negative control, while each treatment have three replications and experiment repeated twice. Results The main component of oil was identified as cinnamaldehyde. The pathogen isolated from infected taro leaves was identified as P.colocasiae and then was used as a test fungus in the current study. Repeated experiments show maximum inhibition percentage of mycelial growth, zoospore germination, and sporulation of the fungus were observed at 0.625 mg/mL, whereas leaf necrosis was 100% inhibited at 1.25 mg/mL concentration. Conclusion This research can be a reference for easy, cost-effective and environment-friendly management and control of taro leaf blight with phytochemicals and plant essential oil derivatives. Graphic abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.