The prognosis for women with breast cancer is adversely affected by the comorbidities of obesity and diabetes mellitus (DM), which are conditions associated with elevated levels of circulating fatty acids, hyperglycaemia and hyperinsulinaemia. We investigated the effects of exposure of nonmalignant and malignant human breast epithelial cells to elevated levels of fatty acids and glucose on their growth, survival and response to chemotherapeutic agents. We found that palmitate induced cell death in the non-malignant cells but not in the malignant cells, which was abrogated through the inhibition of ceramide production and by oleate but not by IGF1. Fatty acid synthase (FAS) is responsible for the de novo synthesis of fatty acids from sugars, and is over-expressed in many epithelial cancers. Abundance of FAS was higher in malignant cells than in non-malignant cells, and was up-regulated by IGF1 in both cell types. IGF-induced growth of non-malignant cells was unaffected by suppression of FAS expression, whereas that of malignant cells was blocked as was their resistance to palmitate-induced cell death. Palmitate did not affect cell proliferation, whereas oleate promoted the growth of non-malignant cells but had the opposite effect, that is, inhibition of IGF1-induced growth of malignant cells. However, when the phosphatidylinositol 3-kinase pathway was inhibited, oleate enhanced IGF1-induced growth in both cell types. Hyperglycaemia conferred resistance on malignant cells, but not on non-malignant cells, to chemotherapy-induced cell death. This resistance was overcome by inhibiting FAS or ceramide production. Understanding the mechanisms involved in the associations between obesity, DM and breast cancer may lead to more effective treatment regimens and new therapeutic targets.
Clinically relevant prostate cancer (PCa) is more frequent in Westernised societies and increasingly men have co-morbidities associated with a Western lifestyle, primarily diabetes, characterised by hyperinsulinaemia and hyperglycaemia. IGFs and their binding proteins (IGFBPs) are important mediators of the effects of nutrition on growth and play a key role in the development of PCa. We used DU145, PC3 and LNCaP PCa cell lines to examine how hyperglycaemia altered their response to docetaxel. Trypan Blue dye-exclusion assay was used to determine the percentage of cell death. Protein abundance was determined using western immunoblotting. Levels of IGFBP2 were measured using an ELISA. IGFBP2 gene silencing was achieved using siRNA technology. DNA methylation was assessed using combined bisulphide restriction analysis. Acetylation status of histones H3 and H4 associated with IGFBP2 gene was assessed using chromatin immunoprecipitation assay. Hyperglycaemia reduced docetaxel-induced apoptosis by 40% for DU145 cells and by 88% for LNCaP cells. This reduced cell death was mediated by a glucose-induced up-regulation of IGFBP2, as silencing IGFBP2 negated the survival effect of high glucose. Glucose increased IGFBP2 via increasing the acetylation of histones associated with the IGFBP2 gene promoter. This finding could have important implications in relation to therapeutic strategies as epigenetic modulation could be reversible.
When originally discovered, one of the initial observations was that, when all of the insulin peptide was depleted from serum, the vast majority of the insulin activity remained and this was due to a single additional peptide, IGF-II. The IGF-II gene is adjacent to the insulin gene, which is a result of gene duplication, but has evolved to be considerably more complicated. It was one of the first genes recognised to be imprinted and expressed in a parent-of-origin specific manner. The gene codes for IGF-II mRNA, but, in addition, also codes for antisense RNA, long non-coding RNA, and several micro RNA. Recent evidence suggests that each of these have important independent roles in metabolic regulation. It has also become clear that an alternatively spliced form of the insulin receptor may be the principle IGF-II receptor. These recent discoveries have important implications for metabolic disorders and also for cancer, for which there is renewed acknowledgement of the importance of metabolic reprogramming.
Background:The development of androgen independence, chemo-, and radioresistance are critical markers of prostate cancer progression and the predominant reasons for its high mortality. Understanding the resistance to therapy could aid the development of more effective treatments.Aim:The aim of this study is to investigate the effects of insulin-like growth factor-binding protein-2 (IGFBP-2) on prostate cancer cell proliferation and its effects on the response to docetaxel.Methods:DU145 and PC3 cells were treated with IGFBP-2, insulin-like growth factor I (IGF-I) alone or in combination with blockade of the IGF-I receptor or integrin receptors. Cells were also treated with IGFBP-2 short interfering ribonucleic acid with or without a PTEN (phosphatase and tensin homologue deleted on chromosome 10) inhibitor or docetaxel. Tritiated thymidine incorporation was used to measure cell proliferation and Trypan blue cell counting for cell death. Levels of IGFBP-2 mRNA were measured using RT–PCR. Abundance and phosphorylation of proteins were assessed using western immunoblotting.Results:The IGFBP-2 promoted cell growth in both cell lines but with PC3 cells this was in an IGF-dependent manner, whereas with DU145 cells the effect was independent of IGF receptor activation. This IGF-independent effect of IGFBP-2 was mediated by interaction with β-1-containing integrins and a consequent increase in PTEN phosphorylation. We also determined that silencing IGFBP-2 in both cell lines increased the sensitivity of the cells to docetaxel.Conclusion:The IGFBP-2 has a key role in the growth of prostate cancer cells, and silencing IGFBP-2 expression reduced the resistance of these cells to docetaxel. Targeting IGFBP-2 may increase the efficacy of docetaxel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.