Engineering electrode surfaces through the electrodeposition of gold may provide a range of advantages in the context of biosensor development, such as greatly enhanced surface area, improved conductivity and versatile functionalization. In this work we report on the development of an electrochemical biosensor for the laccase-catalyzed assay of two catecholamines—dopamine and L-epinephrine. Variety of electrochemical techniques—cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy and constant potential amperometry have been used in its characterization. It has been demonstrated that the laccase electrode is capable of sensing dopamine using two distinct techniques—differential pulse voltammetry and constant potential amperometry, the latter being suitable for the assay of L-epinephrine as well. The biosensor response to both catecholamines, examined by constant potential chronoamperometry over the potential range from 0.2 to −0.1 V (vs. Ag|AgCl, sat KCl) showed the highest electrode sensitivity at 0 and −0.1 V. The dependencies of the current density on either catecholamine’s concentration was found to follow the Michaelis—Menten kinetics with apparent constants KMapp = 0.116 ± 0.015 mM for dopamine and KMapp = 0.245 ± 0.031 mM for L-epinephrine and linear dynamic ranges spanning up to 0.10 mM and 0.20 mM, respectively. Calculated limits of detection for both analytes were found to be within the sub-micromolar concentration range. The biosensor applicability to the assay of dopamine concentration in a pharmaceutical product was demonstrated (with recovery rates between 99% and 106%, n = 3).
The corrosion behaviour of aluminium alloy EN AW-2011 was investigated in selected environments of various electrolytes using gravimetric technique. The results showed that, under the conditions employed in the present work, the corrosion rate of this alloy depends on the specific ions present in solution. The corrosion resistance of aluminium alloy EN AW-2011 is higher in solutions of acids and salts containing sulfate and nitrate ions than in these consisting chloride ions.
The paper presents the results from a study on the possibility to use citric acid as an ecological inhibitor of corrosion in aluminum alloy EN AW-2024 in 0.5 М solution of H 2 SO 4. The study has been carried out by using electrochemical techniques, such as open circuit potential and chronoamperometry. The results reveal that the presence of citric acid in the studied acid medium reduces the corrosion degree of the EN AW-2024 aluminum alloy. The inhibition efficiency increases together with increasing the concentration of the citric acid. The study shows that the citric acid can be used as an ecological inhibitor to fight corrosion in a solution of H 2 SO 4 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.