Parallel-stranded DNA can be formed from alternating AT segments and is not restricted exclusively to homooligomeric AT sequences. DNA oligonucleotides 3'-d(AT)nxC4(AT)n-3' (where x indicates the location of the 5'-5' phosphodiester linkage) form parallel-stranded hairpin structures at micromolar strand concentration for n = 4 or 5 but not for n = 6, 7. The spectral properties of the parallel-stranded structures are similar to those of the hairpin structures containing homooligomeric AT stems. However, parallel-stranded structures formed in alternating AT segments are significantly less stable than either their corresponding antiparallel control or the homooligomeric parallel AT hairpins as evidenced by their lower helix-coil transition enthalpy, melting temperature, and stability constant. This results in a remarkable polymorphism which is most pronounced for 3'-d(AT)5xC4(AT)5-3'. This oligonucleotide can exist as a parallel-stranded hairpin, coil, or concatameric antiparallel structure(s), depending on temperature and strand concentration. These results suggest simple guidelines for the design of parallel-stranded DNA. In addition, we present a model for the assessment of the stability of parallel-stranded duplex structures formed from AT base pairs based on their sequence.
Oligodeoxyribonucleotides containing dA.dU base combinations were shown to form parallel stranded DNA. CD spectra and hyperchromicity profiles provide evidence that the structure is very similar to that of a related parallel stranded dA.dT oligomer. Thermal denaturation studies show that these parallel dA.dU sequences are significantly less stable than their dA.dT analogues in either antiparallel or parallel stranded orientations. The stabilizing effect of the 5-methyl group is similar for parallel and antiparallel sequences. The minor groove binding drug Hoechst 33258 binds with similar affinity to APS dA.dT and APS dA.dU sequences. However, binding to the PS dA.dT hairpin is significantly impaired as a consequence of the different groove dimensions and the presence of thymine methyl groups at the binding site. This results in an 8.6 kJmol-1 reduced free energy of binding for the PS dA.dT sequence. Replacement of the bulky methyl group with a hydrogen (ie. T-->U) results in significantly stronger Hoechst 33258 binding to the parallel dA.dU sequences with a penalty of only 4.1 kJmol-1. Our data demonstrate that although Hoechst 33258 detects the altered groove, it is still able to bind a PS duplex containing dA.dU base pairs with high affinity, despite the large structural differences from its regular binding site in APS DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.